Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (4): 436-444    DOI: 10.11900/0412.1961.2018.00276
Current Issue | Archive | Adv Search |
Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel
Miao JIN1,Wenquan LI1,Shuo HAO1,2,Ruixue MEI1,Na LI1,Lei CHEN1,2()
1. College of Mechanical Engineering, Yanshan University, Qinhuangdao 066004, China
2. National Engineering Research Center for Equipment and Technology of Cold Strip Rolling, Qinhuangdao 066004, China
Cite this article: 

Miao JIN, Wenquan LI, Shuo HAO, Ruixue MEI, Na LI, Lei CHEN. Effect of Solution Temperature on Tensile Deformation Behavior of Mn-N Bearing Duplex Stainless Steel. Acta Metall Sin, 2019, 55(4): 436-444.

Download:  HTML  PDF(19176KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Advanced duplex stainless steels (DSSs) in which Ni is mostly or completely replaced by Mn and N have been developed in recent years. Such Mn-N bearing DSSs can readily achieve exceptional room-temperature tensile properties through the transformation-induced plasticity (TRIP) effect of metastable austenite. During the processing of DSSs, solution treatment is a critical step that tailors the phase fraction and the overall properties. In particular, the phase chemistry can change due to different element partitioning between two constituents, resulting in a different TRIP kinetics, when DSS is solution treated at different temperature. In this work, the effect of solution temperature on tensile deformation behavior of a new Mn-N bearing DSS was studied. The mechanical properties and work-hardening characteristic of the steels solution treated at different solution temperature (1000~1200 ℃) were investigated by thermal modeling test, and the effects of solution temperature on the deformation substructure and fracture characteristics were analyzed by OM, SEM and EBSD. The results show that as the solution temperature increases, the yield strength and tensile strength of the steels decrease, while the elongation (uniform elongation and total elongation) increases firstly and then decreases. The steel solution treated at 1100 ℃ shows the optimum uniform elongation of 46.7%, and a better combination of ultimate tensile strength and ductility of approximately 44.6 GPa·%. The work-hardening rate of the steel shows a three-stage characteristic, namely it declines firstly and then increases and subsequently declines again as the strain increases. However, the increasing extent of the work-hardening rate decreases as the solution temperature increases. The strain-induced martensitic transformation (SIMT) of metastable austenite which causes the TRIP effect has two evolution mechanisms of γεα' and γα'. But SIMT can be suppressed when the solution temperature increases. The fracture surfaces of specimens solution treated at different temperatures show a quasi-cleavage mode, in which both ferrite and strain-induced martensite exhibit cleavage fracture while the residual austenite displays a dimple-mode fracture. Furthermore, the Md30 which can characterize the stability of metastable austenite was calculated, which decreases from 81 ℃ to 38 ℃ as the solution temperature increases from 1000 ℃ to 1200 ℃, indicating that the TRIP effect gets weakening at a higher solution temperature, and the work-hardening and plasticity therefore decrease.

Key words:  duplex stainless steel      solution temperature      work-hardening      TRIP effect      strain induced martensite     
Received:  27 June 2018     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China(Nos.51675467);National Natural Science Foundation of China(Nos.51675465);Natural Science Foundation of Hebei Province(No.E2016203284);China Post Doctoral Science Foundation(Nos.2016-M600194);China Post Doctoral Science Foundation(Nos.2017T100712)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00276     OR     https://www.ams.org.cn/EN/Y2019/V55/I4/436

Fig.1  Dimension of Mn-N bearing duplex stainless steels (DSSs) specimen for tensile test (unit: mm. RD—rolling direction, TD—transverse direction)
Fig.2  Microstructures of the Mn-N bearing DSSs specimen solution treated at 1000 ℃ (a), 1100 ℃ (b) and 1200 ℃ (c) (F(γ)—volume fraction of γ, ND—normal direction)
Fig.3  
T / ℃Yield strength / MPaTensile strength / MPae / %eu / %SD / (GPa·%)
1000510102742.842.043.9
105049799446.546.046.2
110048693947.546.744.6
115047385539.639.135.1
120046077230.630.123.6
Table 1  Mechanical properties of the Mn-N bearing DSSs solution treated at different temperatures
Fig.4  EBSD (a, c) and band contrast (b, d) analyses of microstructures near the fracture surface of Mn-N bearing DSSs specimen solution treated at the temperatures of 1050 ℃ (a, b) and 1200 ℃ (c, d) (The microstructures inside the circles are slip bands or (and) deformation bands)
Fig.5  EBSD analysis of deformed microstructure (30%) of the Mn-N bearing DSSs specimen solution treated at 1200 ℃ (A, B, C indicate martensites of different nucleation and growth mode, the microstructures inside the circles are slip bands or (and) deformation bands. GB—grain boundary)
Fig.6  
T / ℃εsεf
10000.080.35
10500.100.38
11000.090.38
11500.110.33
12000.130.26
Table 2  εs and εf of the Mn-N bearing DSSs solution treated at different temperatures
Fig.7  Fracture surface morphologies of the Mn-N bearing DSSs specimen solution treated at 1000 ℃ (a), 1100 ℃ (b) and 1200 ℃ (c)
Fig.8  
Fig.9  
1 He J, Han G, Fukuyama S, et al. Tensile behaviour of duplex stainless steel at low temperatures [J]. Metal. Sci. J., 1999, 15: 909
2 Badji R, Bacroix B, Bouabdallah M.Texture, microstructure and anisotropic properties in annealed 2205 duplex stainless steel welds[J]. Mater. Charact.,2011, 62: 833
3 Jiang L Z, Zhang W, Wang Z Y. Research and development of lean duplex stainless steels [J]. J. Iron Steel Res., 2013, 25(4): 1
3 江来珠, 张 伟, 王治宇. 经济型双相不锈钢的研发进展 [J]. 钢铁研究学报, 2013, 25(4): 1)
4 Du C F, Zhan F, Yang Y H, et al. Research progress in nickel-saving duplex stainless steel [J]. Met. Funct. Mater., 2010: 17(5): 63
4 杜春风, 詹 凤, 杨银辉等. 节镍型双相不锈钢的研究进展 [J]. 金属功能材料, 2010: 17(5): 63)
5 Herrera C, Ponge D, Raabe D. Design of a novel Mn-based 1 GPa duplex stainless TRIP Steel with 60% ductility by a reduction of austenite stability [J]. Acta Mater., 2011, 59: 4653
6 Wang J, Uggowitzer P J, Magdowski R, et al. Nickel-free duplex stainless steels [J]. Scr. Mater., 1998, 40: 123
7 Ran Q X, Xu Y L, Li J, et al. Effect of heat treatment on transformation-induced plasticity of economical Cr19 duplex stainless steel [J]. Mater. Des., 2014, 56: 959
8 Choi J Y, Ji J H, Hwang S W, et al. TRIP aided deformation of a near-Ni-free, Mn-N bearing duplex stainless steel [J]. Mater. Sci. Eng., 2012, A535: 32
9 Kang J Y, Kim H, Kim K I, et al. Effect of austenitic texture on tensile behavior of lean duplex stainless steel with transformation induced plasticity (TRIP) [J]. Mater. Sci. Eng., 2017, A681: 114
10 Zhang W N, Liu Z Y, Wang G D. Martensitic transformation induced by deformation and work-hardening behavior of high manganese TRIP steels [J]. Acta Metall. Sin., 2010, 46: 1230
10 张维娜, 刘振宇, 王国栋. 高锰TRIP钢的形变诱导马氏体相变及加工硬化行为 [J]. 金属学报, 2010, 46: 1230
11 Chen L, Li F, Zhang Y J, et al. Calculation for the phase diagram and stability of metastable austenite in a TRIP/TWIP duplex stainless steel [J]. J. Yanshan Univ., 2016, 40: 35
11 陈 雷, 李 飞, 张英杰等. 一种TRIP/TWIP型双相不锈钢的相图及其亚稳奥氏体组织稳定性计算 [J]. 燕山大学学报, 2016, 40: 35
12 Li X F, Li Z B, Guo H S, et al. Influence of solution temperature on structure and properties of Ni-free type dual stainless steel 00Cr21 Mn5Ni1N [J]. J. Iron Steel Res., 2007, 19(10): 44
12 李学锋, 李正邦, 郭海生等. 固溶温度对00Cr21Mn5Ni1N节镍型双相不锈钢组织和性能的影响 [J]. 钢铁研究学报, 2007, 19(10): 44)
13 Chen L, Zhang Y J, Li F, et al. Effect of solution temperature on TRIP/TWIP behavior of a lean duplex stainless steel [J]. Iron Steel, 2017, 52(4): 55
13 陈 雷, 张英杰, 李 飞等. 固溶温度对节约型双相不锈钢TRIP/TWIP行为的影响 [J]. 钢铁, 2017, 52(4): 55)
14 Guo B F, Zhang Q F, Chen L, et al. Influence of annealing temperature on the strain-hardening behavior of a lean duplex stainless steel [J]. Mater. Sci. Eng., 2018, A722: 216
15 Tang Z Y, Wu Z Q, Zan N, et al. Microstructure evolution and deformation behavior of high manganese TRIP/TWIP symbiotic effect steels under high-speed deformation [J]. Acta Metall. Sin., 2011, 47: 1426
15 唐正友, 吴志强, 昝 娜等. 高锰TRIP/TWIP效应共生钢高速变形过程中的组织演变及变形行为 [J]. 金属学报, 2011, 47: 1426
16 Choi J Y, Ji J H, Hwang S W, et al. Effects of nitrogen content on TRIP of Fe-20Cr-5Mn-xN duplex stainless steel [J]. Mater. Sci. Eng., 2012, A534: 673
17 Choi J Y, Ji J H, Hwang S W, et al. Strain induced martensitic transformation of Fe-20Cr-5Mn-0.2Ni duplex stainless steel during cold rolling: Effects of nitrogen addition [J]. Mater. Sci. Eng., 2011, A528: 6012
18 Wang M M, Tasan C C, Ponge D, et al. Spectral TRIP enables ductile 1.1 GPa martensite [J]. Acta Mater., 2016, 111: 262
19 Masumura T, Nakada N, Tsuchiyama T, et al. The difference in thermal and mechanical stabilities of austenite between carbon- and nitrogen-added metastable austenitic stainless steels [J]. Acta Mater., 2015, 84: 330
20 Kim E Y, Woo W C, Heo Y U, et al. Effect of kinematic stability of the austenite phase on phase transformation behavior and deformation heterogeneity in duplex stainless steel using the crystal plasticity finite element method [J]. Int. J. Plast., 2016, 79: 48
21 Lin Y C, Chen M S, Zhong J. Static recrystallization behaviors of deformed 42CrMo steel [J]. J. Cent. South Univ. (Sci. Technol.), 2009, 40: 411
21 蔺永诚, 陈明松, 钟 掘. 42CrMo钢形变奥氏体的静态再结晶 [J]. 中南大学学报(自然科学版), 2009, 40: 411
22 Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater. 2012, 60: 5791
23 Lu F Y, Yang P, Meng L, et al. Microstructure, mechanical properties and crystallography analysis of Fe-22Mn TRIP/TWIP steel after tensile deformation [J]. Acta Metall. Sin., 2013, 49: 1
23 鲁法云, 杨 平, 孟 利等. Fe-22Mn TRIP/TWIP钢拉伸过程组织、性能及晶体学行为分析 [J]. 金属学报, 2013, 49: 1
24 Yen H W, Ooi S W, Eizadjou M, et al. Role of stress-assisted martensite in the design of strong ultrafine-grained duplex steels [J]. Acta Mater., 2015, 82: 100
25 Bian H X. The research of plastic instability on austenitic stainless steel during hot deformation [D]. Lanzhou: Lanzhou University of Technology, 2014
25 边红霞. 奥氏体不锈钢热变形过程中的塑性失稳研究 [D]. 兰州: 兰州理工大学, 2014
26 Sun P L, Cerreta E K, Bingert J F, et al. Enhanced tensile ductility through boundary structure engineering in ultrafine-grained aluminum [J]. Mater. Sci. Eng., 2007, A464: 343
27 Chen J H, Cao R. Micromechanism of cleavage fracture of weld metals [J]. Acta Metall. Sin., 2017, 53: 1427
27 陈剑虹, 曹 睿. 焊缝金属解理断裂微观机理 [J]. 金属学报, 2017, 53: 1427
28 Moallemi M, Zarei-Hanzaki A, Baghbadorani H S. Evolution of microstructure and mechanical properties in a cold deformed nitrogen bearing TRIP-assisted duplex stainless steel after reversion annealing [J]. Mater. Sci. Eng., 2017, A683: 83
29 Zhang W, Hu J C. Effect of annealing temperature on transformation induced plasticity effect of a lean duplex stainless steel [J]. Mater. Charact., 2013, 79: 37
[1] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] CHEN Guo, WANG Xinbo, ZHANG Renxiao, MA Chengyue, YANG Haifeng, ZHOU Li, ZHAO Yunqiang. Effect of Tool Rotation Speed on Microstructure and Properties of Friction Stir Processed 2507 Duplex Stainless Steel[J]. 金属学报, 2021, 57(6): 725-735.
[4] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[5] DENG Yahui, YANG Yinhui, PU Chaobo, NI Ke, PAN Xiaoyu. Effect of Mn Addition on High Temperature Tensile Behavior of 23%Cr Low Nickel Type Duplex Stainless Steel[J]. 金属学报, 2020, 56(7): 949-959.
[6] WANG Guiqin,WANG Qin,CHE Honglong,LI Yajun,LEI Mingkai. Effects of Silicon on the Microstructure and Propertiesof Cast Duplex Stainless Steel with Ultra-HighChromium and High Carbon[J]. 金属学报, 2020, 56(3): 278-290.
[7] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[8] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[9] CHEN Lei, HAO Shuo, ZOU Zongyuan, HAN Shuting, ZHANG Rongqiang, GUO Baofeng. Mechanical Characteristics of TRIP-Assisted Duplex Stainless Steel Fe-19.6Cr-2Ni-2.9Mn-1.6Si During Cyclic Deformation[J]. 金属学报, 2019, 55(12): 1495-1502.
[10] CHEN Lei , HAO Shuo , MEI Ruixue , JIA Wei , LI Wenquan , GUO Baofeng . Intrinsic Increment of Plasticity Induced by TRIP and Its Dependence on the Annealing Temperature in a Lean Duplex Stainless Steel[J]. 金属学报, 2019, 55(11): 1359-1366.
[11] Feng YANG, Haiwen LUO, Han DONG. Effects of Intercritical Annealing Temperature on the Tensile Behavior of Cold Rolled 7Mn Steel and the Constitutive Modeling[J]. 金属学报, 2018, 54(6): 859-867.
[12] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[13] Kai ZHU, Cuilan WU, Pan XIE, Mei HAN, Yuanrui LIU, Xiangge ZHANG, Jianghua CHEN. Microstructure and Mechanical Properties of an Austenite/Ferrite Laminate Structured High-Manganese Steel[J]. 金属学报, 2018, 54(10): 1387-1398.
[14] Longgang HOU, Mingli LIU, Xindong WANG, Linzhong ZHUANG, Jishan ZHANG. Cryogenic Processing High-Strength 7050 Aluminum Alloy and Controlling of the Microstructures and Mechanical Properties[J]. 金属学报, 2017, 53(9): 1075-1090.
[15] Hai ZHANG,Shilei LI,Gang LIU,Yanli WANG. Effects of Hot Working on the Microstructure and Thermal Ageing Impact Fracture Behaviors of Z3CN20-09MDuplex Stainless Steel[J]. 金属学报, 2017, 53(5): 531-538.
No Suggested Reading articles found!