Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (10): 1260-1272    DOI: 10.11900/0412.1961.2018.00500
Current Issue | Archive | Adv Search |
Microstructure and Properties of a New Third Generation Powder Metallurgy Superalloy FGH100L
TIAN Tian1,HAO Zhibo1,JIA Chonglin2,GE Changchun1()
1. Institute of Powder Metallurgy and Advanced Ceramics, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2. Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
Cite this article: 

TIAN Tian, HAO Zhibo, JIA Chonglin, GE Changchun. Microstructure and Properties of a New Third Generation Powder Metallurgy Superalloy FGH100L. Acta Metall Sin, 2019, 55(10): 1260-1272.

Download:  HTML  PDF(25134KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Spray forming (SF) is a novel rapid solidification technique. Compared with traditional cast & wrought and powder metallurgy technique, it has the advantages of less segregation and shorter process. In this work, a new third generation powder metallurgy (PM) superalloy FGH100L was prepared by SF+hot isostatic pressing (HIP)+isothermal forging (IF)+heat treatment (HT) process. The effects of solution heat treatment temperatures and preparation process on the microstructure and mechanical properties of FGH100L alloy were studied. The results show that the microstructure of SF+HIP+IF state FGH100L alloy is very sensitive to changes of solution temperature. With the increase of the solution temperature (1110~1170 ℃), the grain size of the alloy grew, and the size of the γ' strengthened phase first increased and then decreased. Its hardness, tensile strength and plasticity at room temperature/high temperature all show a trend of increasing followed by decreasing. The quantitative equilibrium of three sizes of γ' phase in the alloy is more reasonable, the microstructure of the alloy is the best, and the hardness and room temperature/high temperature tensile properties of alloy have the highest parameter values at 1130 ℃. At the same temperature, the grain size of FGH100L alloy increased first and then decreased under different processing conditions of SF, SF+HIP+HT and SF+HIP+IF+HT. The morphology of grains changed from subspherical to polygonal to subspherical. Alloy grain size increases, and the grain boundary bending degree decreases in the process of SF+HIP+HT. Due to SF+HIP+IF+HT process, the alloy recrystallizes, refines the grain, and presents chain-like structure, forming curved grain boundary and having higher yield strength. Under SF+HIP+HT and SF+HIP+IF+HT processes, the tensile fracture of the alloy at room temperature changed from intergranular brittle fracture to transgranular and intergranular mixed fracture, and the tensile fracture at high temperature was intergranular fracture.

Key words:  the third generation PM superalloy FGH100L      spray forming      solution heat treatment      microstructure      mechanical property     
Received:  05 November 2018     
ZTFLH:  TF125.2  
Fund: National Natural Science Foundation of China(51171016)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00500     OR     https://www.ams.org.cn/EN/Y2019/V55/I10/1260

Process statePositionAverage density / (g·cm-3)Relative density / %
SFTop8.1297.13
Middle8.1597.49
Bottom8.1497.37
SF+HIP+HTMiddle8.2398.44
SF+HIP+IF+HTMiddle8.2999.16
Table 1  Density and relative density of FGH100L alloy under different process states
Fig.1  DSC curve of FGH100L alloy
Fig.2  Relationship between precipitation phase and temperature in FGH100L alloy
Fig.3  OM images of SF+HIP+IF state FGH100L alloy after solution heat treatment at 1110 ℃ (a), 1130 ℃ (b), 1150 ℃ (c), 1170 ℃ (d), and EBSD image at 1130 ℃ (e) and statistical map of local misorientation at 1130 ℃ (f) (Inset in Fig.3d shows the enlarged view, arrow shows grain boundary bent and bulged)
Fig.4  Low (a, c, e, g) and high (b, d, f, h) magnified SEM images of precipitation phases of SF+HIP+IF state FGH100L alloy after solution heat treatment at 1110 ℃ (a, b), 1130 ℃ (c, d), 1150 ℃ (e, f) and 1170 ℃ (g, h)
Fig.5  OM images of FGH100L alloy under the processing of SF (a), SF+HIP+HT (b), SF+HIP+IF+HT (c, d) (Insets show the enlarnged views)
Fig.6  SEM images of precipitates of FGH100L alloy under the processing of SF (a, c, d), SF+HIP+HT (e, g, h), SF+HIP+IF+HT (i, k, l) and corresponding EDS analyses (b, f, j) (Insets show the enlarged views)
Fig.7  Relationships between Brinell hardness and solution temperature of FGH100L alloy under different process states
ProcessesSolution temperature / ℃Rp0.2 / MPaRm / MPaδ / %
SF-911107827.5
SF+HIP+HT11301100155020.0
SF+HIP+IF+HT11101180158016.5
11301210162021.5
11501100156018.5
11701090154015.0
AA-LSHR[26,27]11301045153815.0
Table 2  Room temperature tensile properties of FGH100L alloy at different processes and solution temperatures
ProcessesSolution temperature / ℃Rp0.2 / MPaRm / MPaδ / %
SF+HIP+HT11301050131011.5
SF+HIP+IF+HT1110100012508.0
11301140138016.5
11501139136010.0
11701130132012.5
AA-LSHR[26,27]11301137.71316.98.0
Table 3  High temperature (705 ℃) tensile properties of FGH100L alloy at different processes and solution temperatures
Fig.8  SEM images of tensile fractures of FGH100L superalloy under different hot processes of SF at 20 ℃ (a, b), SF+HIP+HT at 20 ℃ (c~f), SF+HIP+IF+HT at 20 ℃ (g~j) and SF+HIP+IF+HT at 705 ℃ (k~n)
[1] Gabb T P, Telesman J, Kantzos P T ,et al. Characterization of the temperature capabilities of advanced disk alloy ME3 [R]. Washington: National Aeronautics and Space Administration, 2002
[2] Hu B F, Liu G Q, Jia C C ,et al. Development in new type high-performance P/M superalloys [J]. J. Mater. Eng., 2007, 35(2): 49
[2] (胡本芙, 刘国权, 贾成厂等. 新型高性能粉末高温合金的研究与发展 [J]. 材料工程, 2007, 35(2): 49)
[3] Jia J, Tao Y, Zhang Y W ,et al. Recent development of third generation P/M superalloy René104 [J]. Powder Metall. Ind., 2007, 17(3): 36
[3] (贾 建, 陶 宇, 张义文等. 第三代粉末冶金高温合金René104的研究进展 [J]. 粉末冶金工业, 2007, 17(3): 36)
[4] Raisson G. Evolution of PM nickel base superalloy processes and products [J]. Powder Metall., 2008, 51(1): 10
[5] Crozet C, Devaux A, Forestier R ,et al. Effect of ingot size on microstructure and properties of the new advanced AD730TM superalloy [A]. Proceedings of the 13th International Symposium of Superalloys [C]. New York: TMS, 2016: 437
[6] Henein H, Uhlenwinkel V, Fritsching U. Metal Sprays and Spray Deposition [M]. Cham: Springer, 2017: 497
[7] Bricknell R H. The structure and properties of a nickel-base superalloy produced by osprey atomization-deposition [J]. Metall. Trans., 1986, 17A: 583
[8] Fiedler H C, Sawyer T F, Kopp R W ,et al. The spray forming of superalloys [J]. JOM, 1987, 39(8): 28
[9] Chang K M, Fiedler H C. Spray-formed high-strength superalloys [A]. Proceedings of the Sixth International Symposium on Superalloys [C]. New York: TMS, 1988: 485
[10] Moran A L, Palko W A. Spray forming alloy 625 marine piping [J]. JOM, 1988, 40(12): 12
[11] Kennedy R L, Davis R M, Vaccaro F P. An evaluation of spray formed alloy 718 [A]. Superalloy718: Metallurgy and Applications [C]. Warrendale: TMS, 1989: 97
[12] Benz M G, Sawyer T F, Carter W T ,et al. Nitrogen in spray formed superalloys [J]. Powder Metall., 1994, 37: 213
[13] Grant P S. Solidification in spray forming [J]. Metall. Mater. Trans., 2007, 38A: 1520
[14] Mi J, Grant P S, Fritsching U ,et al. Multiphysics modelling of the spray forming process [J]. Mater. Sci. Eng., 2008, A477: 2
[15] Zhang G Q, Mi G F, Li Z ,et al. Spray formed nickel based superalloys using argon as atomization gas [J]. Chin J. Nonferrous Met., 1999, 9suppl.): 90
[15] (张国庆, 米国发, 李 周等. 氩气雾化喷射成形的镍基高温合金 [J]. 中国有色金属学报, 1999, 9(增刊):90)
[16] Liu Z W, Mi G F, Tian S F ,et al. A nitrogen spray atomized and deposited Ni-base superalloy [J]. Chin. J. Nonferrous Met., 1999, 9(suppl.):100
[16] (刘仲武, 米国发, 田世藩等. 氮气雾化喷射沉积变形镍基高温合金 [J]. 中国有色金属学报, 1999, 9(增刊):100)
[17] Li Z, Zhang G Q, Zhang Z H ,et al. Relative density and gas content in spray formed superalloys [J]. J. Aeron. Mater., 2000, 20(3): 67
[17] (李 周, 张国庆, 张智慧. 喷射成形高温合金沉积坯致密度与气体含量 [J]. 航空材料学报, 2000, 20(3): 67)
[18] Mi G F, Liu Y L, Tian S F ,et al. Microstructure and mechanical properties of spray deposited Ni-based superalloys [J]. J.Univ Wuhan. Technol.-Mater. Sci. Ed., 2009, 24: 796
[19] Sun J F, Shen J, Cao F Y, alat. Tensile frecture behaviors of spray formed superalloy [J]. Nonferrous Met., 2002, 54(2): 25
[19] (孙剑飞, 沈 军, 曹福洋等. 喷射成形镍基高温合金的拉伸断裂行为 [J]. 有色金属, 2002, 54(2): 25)
[20] Kang F W, Cao F Y, Zhang X M ,et al. Microstructure and mechanical properties of a spray-formed superalloy [J]. Acta Metall. Sin. (Engl. Lett.), 2014, 27: 1063
[21] Luo G M, Fan J F, Shan A D. Microstructure analysis of spray-formed superalloy FGH4096 [J]. Baosteel Technol., 2008, (2): 54
[21] (罗光敏, 樊俊飞, 单爱党. 喷射成形高温合金FGH4096的组织分析 [J]. 宝钢技术, 2008, (2): 54)
[22] Xu Y, Huang P, Shu Q ,et al. Microstructure and property of isothermal forged spray forming FGH4095 superalloy [J]. Acta Metall. Sin., 2013, 49: 1399
[22] (徐 轶, 黄 鹏, 舒 琴等. 喷射成形FGH4095高温合金近等温锻造组织特征及性能 [J]. 金属学报, 2013, 49: 1399)
[23] Jia C L, Ge C C, Yan Q Z. Microstructure evolution and mechanical properties of disk superalloy under multiplex heat treatment [J]. Mater. Sci. Eng., 2016, A659: 287
[24] Jia C L, Ge C C, Yan Q Z. Innovative technologies for powder metallurgy-based disk superalloys: Progress and proposal [J]. Chin. Phys., 2016, 25B: 026103
[25] Wu H H, Wang C W, Zhong J H ,et al. Dispersion effect of graphene composite particles by spray forming [J]. Spec. Casting Nonferrous Alloy, 2019, 39: 75
[25] (吴海华, 王曹文, 钟纪红等. 石墨烯复合微粒喷射成形分散效果研究 [J]. 特种铸造及有色合金, 2019, 39: 75)
[26] Gabb T P, Kantzos P T. Thermal and mechanical property characterization of the advanced disk alloy LSHR [R]. Cleveland: NASA Glenn Research Center, 2005
[27] Jou H J. Microstructure modeling of third generation disk alloys [R]. Cleveland: NASA, 2010
[28] Wang X H, Zheng L, Zhang M C ,et al. Microstructural characteristics and thermodynamic calculation on precipitated phases of GH4133B alloy [J]. Rare Met. Mater. Eng., 2011, 40: 1005
[28] (王晓辉, 郑 磊, 张麦仓等. GH4133B合金组织特征及平衡相析出热力学研究 [J]. 稀有金属材料与工程, 2011, 40: 1005)
[29] Tian G F, Wang Y, Yang J, et al. Thermodynamic calculation on equilibrium precipitated phases in P/M nickel-base superalloy [J]. Powder Metall. Technol., 2012, 30: 243
[29] (田高峰, 汪 煜, 杨 杰等. Ni基粉末冶金高温合金平衡析出相的热力学研究 [J]. 粉末冶金技术, 2012, 30: 243)
[30] Jia J, Tao Y, Zhang Y W. The thermodynamic behavior of PM superalloy FGH4098 [J]. J. Iron Steel Res., 2011, 23(suppl.2482
[30] (贾 建, 陶 宇, 张义文等. 第三代粉末冶金高温合金FGH4098的热力学行为研究 [J]. 钢铁研究学报, 2011, 23(增刊2): 482)
[31] Hu B F, Chen H M, Jin K S ,et al. Static recrystallization mechanism of FGH95 superalloy [J]. Chin. J. Nonferrous Met., 2004, 14: 901
[31] (胡本芙, 陈焕铭, 金开生等. FGH95高温合金的静态再结晶机制 [J]. 中国有色金属学报, 2004, 14: 901)
[32] Hu B F, Liu G Q, Wu K, et al. Morphological instability of γ' phase in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 257
[32] (胡本芙, 刘国权, 吴 凯等. 镍基粉末冶金高温合金中γ'相形态不稳定性研究 [J]. 金属学报, 2012, 48: 257)
[33] Jia C L, Zhang F L, Li Y. Investigation on microstructure evolution of a new disk superalloy under different hot process [J]. Met. Powder Rep., 2018, 73: 319
[34] Hu B F, Liu G Q, Wu K ,et al. Morphological changes behavior of fan-type structures of γ' precipitates in nickel-based powder metallurgy superalloys [J]. Acta Metall. Sin., 2012, 48: 830
[34] (胡本芙, 刘国权, 吴 凯等. 新型镍基粉末冶金高温合金中γ'相扇形组织形成以及演化行为研究 [J]. 金属学报, 2012, 48: 830)
[35] Hu B F, Chen H M, Song D ,et al. The effect of pre-heating on carbide precipatites in FGH95 superalloy powders prepared by PREP [J]. Acta Metall. Sin., 2003, 39: 470
[35] (胡本芙, 陈焕铭, 宋 铎等. 预热处理对FGH95高温合金粉末中碳化物的影响 [J]. 金属学报, 2003, 39: 470)
[36] Qin X Z, Guo J T, Yuan C ,et al. Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy [J]. Mater. Sci. Eng., 2008, A485: 74
[37] Zhang Y, Zhang Y W, Zhang N, et al. Heat treatment processes and microstructure and properties research on P/M superalloy FGH97 [J]. J. Aeron. Mater., 2008, 28(6): 5
[37] (张 莹, 张义文, 张 娜等. FGH97粉末冶金高温合金热处理工艺和组织性能的研究 [J]. 航空材料学报, 2008, 28(6): 5)
[38] Wu K, Liu G Q, Hu B F ,et al. Effect of solution cooling rate and pre-heat treatment on the microstructure and microhardness of a novel type nickel-based P/M superalloy [J]. Rare Met. Mater. Eng., 2012, 41: 685
[38] (吴 凯, 刘国权, 胡本芙等. 固溶冷却速度和前处理对新型镍基粉末高温合金组织与显微硬度的影响 [J]. 稀有金属材料与工程, 2012, 41: 685)
[39] Yang W P, Hu B F, Liu G Q, et al. Formation mechanism of serrated grain boundary caused by different morphologies of γ' phases in a high-performance nickel-based powder metallurgy superalloy [J]. J. Mater. Eng., 2015, 43(6): 7
[39] (杨万鹏, 胡本芙, 刘国权等. 高性能镍基粉末高温合金中γ'相形态致锯齿晶界形成机理研究 [J]. 材料工程, 2015, 43(6): 7)
[40] Ponge D, Gottstein G. Necklace formation during dynamic recrystallization: Mechanisms and impact on flow behavior [J]. Acta Mater., 1998, 46: 69
[41] Zhong X T, Wang L, Liu F. Study on formation mechanism of necklace structure in discontinuous dynamic recrystallization of Incoloy 028 [J]. Acta Metall. Sin., 2018, 54: 969
[41] (钟茜婷, 王 磊, 刘 峰. Incoloy 028合金不连续动态再结晶中链状组织形成机理研究 [J]. 金属学报, 2018, 54: 969)
[42] Wu K, Liu G Q, Hu B F, et al. Effect of solution heat treatment on the microstructure and properties of a novel nickel-based P/M superalloy FGH98 I [J]. Rare Met. Mater. Eng., 2011, 40: 1966
[42] (吴 凯, 刘国权, 胡本芙等. 固溶热处理对新型镍基粉末FGH98 I高温合金组织与性能的影响 [J]. 稀有金属材料与工程, 2011, 40: 1966)
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[6] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[13] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[14] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[15] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
No Suggested Reading articles found!