Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (10): 1251-1259    DOI: 10.11900/0412.1961.2018.00496
Current Issue | Archive | Adv Search |
Effect of Composition Gradient on Microstructure and Properties of Laser Deposition TC4/TC11 Interface
HE Bo1,XING Meng1,YANG Guang2(),XING Fei3,LIU Xiangyu4
1. School of Mechatronics Engineering, Shenyang Aerospace University, Shenyang 110136, China
2. Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process, Shenyang Aerospace University, Shenyang 110136, China
3. Liaoning Additive Manufacturing Industry Technology Research Institute Co. , Ltd. , Shenyang 110021, China
4. Shenyang Zhongke Yuchen Technology Co. , Ltd. , Shenyang 110021, China
Cite this article: 

HE Bo, XING Meng, YANG Guang, XING Fei, LIU Xiangyu. Effect of Composition Gradient on Microstructure and Properties of Laser Deposition TC4/TC11 Interface. Acta Metall Sin, 2019, 55(10): 1251-1259.

Download:  HTML  PDF(25223KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, gradient composites have been increasingly used in life and industry. The rapid development of laser deposition manufacturing (LDM) technology realizes the manufacturing of dissimilar-metal gradient composite structure used for main bearing component. In this work, laser deposited TC4/TC11 gradient composite structures are taken as the research objects. Since there are few studies on TC4/TC11 titanium alloy, this work focuses on the effect of heat treatment on the microstructures and properties of TC4/TC11 titanium alloy, providing the basis to improve the quality and serving life of laser deposited gradient composite structure. Based on comparative study on the microstructures, residual static performances, tensile fractures, room temperature abrasion results and microhardnesses of laser deposition TC4/TC11 titanium alloy specimens with different composition gradients under different heat treatments, the ways to improve the laser deposition TC4/TC11 titanium alloy microstructure and the comprehensive mechanical properties were explored. Results show that when the temperature of solution and ageing treatment rises to 970 ℃, the length-width ratio of α laths of TC4/TC11 titanium alloy is less than that of the other heat treatment samples. The globular α phase and the short bar α phase are significantly increased. The microstructure of the three-layer transition zone is more uniform and orderly, and the transition interface almost disappears. With the increase of the number of transition layers, the strength and plasticity of solution and ageing samples with different component gradients are increased. The frictional coefficient curve of sample with 1 transition layer is similar to that of the sample with 3 transition layers. The friction coefficient of the sample with the transition layer of 0 is relatively small. The wear mechanism of solution and ageing samples with different component gradients are mainly lamination wear and adhesive wear. From the as-deposited state to the stress relieved and finally to the ageing state of solid solution, the corresponding hardness of the sample with different component gradients increases successively.

Key words:  laser deposition manufacturing      titanium alloy      heat treatment      microstructure      property     
Received:  01 November 2018     
ZTFLH:  TG146.2  
Fund: National Key Research and Development Program of China(2018YFB1105805);National Key Research and Development Program of China(2017YFB1104002);Civil Aircraft Special Scientific Research Project of Ministry of Industry and Information Technology(MJZ-2016-G-71);Scientific Research Project of Liaoning Provincial Department of Education(L201738);Open Fund of Key Laboratory of Fundamental Science for National Defence of Aeronautical Digital Manufacturing Process(SHSYS2017007)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00496     OR     https://www.ams.org.cn/EN/Y2019/V55/I10/1251

AlloyAlVMoZrSiCONHTi
TC45.654.02---0.0620.150.0150.012Bal.
TC115.48-3.541.570.320.0240.020.0120.010Bal.
Table 1  Chemical compositions of TC4 and TC11 alloys
Layer No.TC4TC11
17525
25050
32575
Table 2  Compositions of each layer for three transition layers sample
No.Forming technique and statusHeat treatment parameter
1Laser deposition manufacturingAC
2Stress relief annealing550 ℃, 1 h, AC
3Solution-ageing treatment930 ℃, 1 h, AC+550 ℃, 4 h, AC
4Solution-ageing treatment950 ℃, 1 h, AC+550 ℃, 4 h, AC
5Solution-ageing treatment970 ℃, 1 h, AC+550 ℃, 4 h, AC
Table 3  Heat treatment processes
Fig.1  Schematic of tensile sample sampling
Fig.2  OM (a, c~f) and SEM (b) images of laser deposition manufacturing TC4/TC11 alloys with 0 transition layer under heat treatment processes of No.1 (a, b), No.2 (c), No.3 (d), No.4 (e) and No.5 (f) (Curves show the TC11/TC4 interfaces)
Fig.3  OM images of laser deposition manufacturing TC4/TC11 alloys with 1 transition layer under heat treatment processes of No.1 (a), No.2 (b), No.3 (c), No.4 (d) and No.5 (e)
Fig.4  OM images of laser deposition manufacturing TC4/TC11 alloys with 3 transition layers under heat treatment processes of No.1 (a), No.2 (b), No.3 (c), No.4 (d) and No.5 (e)
Number of layerσb / MPaσ0.2 / MPaδ / %ψ / %
0987.4957.726.944.8
1994.5964.927.545.3
31010.2980.529.147.1
Table 4  Room temperature tensile properties of solution-ageing TC4/TC11 alloys with different transition layers
Fig.5  OM images of tensile fracture sections of solution-ageing treated TC4/TC11 alloys with transition layers 0 (a), 1 (b) and 3 (c)
Fig.6  Low (a1~c1) and locally high (a2~c2) magnified tensile fracture SEM images of solution-ageing treated TC4/TC11 alloys with transition layers 0 (a1, a2), 1 (b1, b2) and 3 (c1, c2)
Fig.7  Friction coefficient curves of solution-ageing TC4/TC11 titanium alloys with different transition layers
Fig.8  Wear morphologies of solution-ageing TC4/TC11 titanium alloys with transition layers 0 (a), 1 (b) and 3 (c)
Fig.9  EDS analyses of TC4/TC11 with transition layers 0 (a), 1 (b) and 3 (c)
Status of material013
As-deposited501.3527.3517.6
Stress relief annealing515.7536.1533.4
Solution-ageing treatment552.1556.4550.8
Table 5  Average micro-hardnesses of TC4/TC11 titanium alloys with different transition layers under different heat treatments
[1] Zhang S Y, Lin X, Chen J ,et al. Influence of heat treatment on the microstructure and properties of Ti-6Al-4V titanium alloy by laser rapid forming [J]. Rare Met. Mater. Eng., 2007, 36: 1263
[1] (张霜银, 林 鑫, 陈 静等. 热处理对激光成形TC4合金组织及性能的影响 [J]. 稀有金属材料与工程, 2007, 36: 1263)
[2] Jin P, Sui R, Li F X ,et al. Reactive wetting of TC4 titanium alloy by molten 6061 Al and 4043 Al alloys [J]. Acta Metall. Sin., 2017, 53: 479
[2] (靳 鹏, 隋 然, 李富祥等. 熔融6061/4043铝合金在TC4钛合金表面的反应润湿 [J]. 金属学报, 2017, 53: 479)
[3] Gao Y K. Influence of different surface modification treatments on surface integrity and fatigue performance of TC4 titanium alloy [J]. Acta Metall. Sin., 2016, 52: 915
[3] (高玉魁. 不同表面改性强化处理对TC4钛合金表面完整性及疲劳性能的影响 [J]. 金属学报, 2016, 52: 915)
[4] Ji S D, Wen Q, Ma L, et al. Microstructure along thickness direction of friction stir welded TC4 titanium alloy joint [J]. Acta Metall. Sin., 2015, 51: 1391
[4] (姬书得, 温 泉, 马 琳
[5] Huang Y, Chen J, Zhang F Y ,et al. Influence of heat treatment on microstructure of laser solid forming Ti-6.5Al-3.5Mo-1.5Zr-0.25Si alloys [J]. Rare Met. Mater. Eng., 2009, 38: 2146
[5] (黄 瑜, 陈 静, 张凤英等. 热处理对激光立体成形TC11钛合金组织的影响 [J]. 稀有金属材料与工程, 2009, 38: 2146)
[6] Zeng W D, Zhou Y G. Influence of cooling rate on microstructure and mechanical properties of bata processed TC11 alloy [J]. Acta Metall. Sin., 2002, 38: 1273
[6] (曾卫东, 周义刚. 冷速对TC11合金β加工显微组织和力学性能的影响 [J]. 金属学报, 2002, 38: 1273)
[7] Zhou Y G, Zeng W D. The influence of microstructure on dwell sensitivity of fatigue in Ti-6.5Al-3.5Mo-1.5Zr-0.3Si alloy [J]. Acta Metall. Sin., 2000, 36: 897
[7] (周义刚, 曾卫东. 显微组织对TC11合金高温保时疲劳敏感性的影响 [J]. 金属学报, 2000, 36: 897)
[8] Liu Y Y, Zhang W X, Zhang Y B ,et al. Effect of deformation amount on the microhardness and element diffusion of the transition zone for Ti3Al/TC11 by laser solid forming [J]. Rare Met. Mater. Eng., 2016, 45: 2429
[8] (刘莹莹, 张温馨, 张元勃等. 变形量对激光立体成形Ti3Al/TC11过渡区显微硬度及合金元素扩散的影响 [J]. 稀有金属材料与工程, 2016, 45: 2429)
[9] Liu Y Y, Lin X, Yang H O ,et al. Effect of component gradient on microstructure and properties of joining interface for Ti3Al/TC11 alloy by laser solid forming [J]. Rare Met. Mater. Eng., 2014, 43: 2197
[9] (刘莹莹, 林 鑫, 杨海鸥等. 成分梯度对激光立体成形Ti3Al/TC11连接界面组织和性能的影响 [J]. 稀有金属材料与工程, 2014, 43: 2197)
[10] Chen Y H, Li S H, Lu W W. Study on crack sensitivity of NiTiNb/TC4 laser micro-welding joints [J]. Aeronaut. Sci. Technol., 2017, 28(4): 75
[10] (陈玉华, 李树寒, 陆巍巍. NiTiNb/TC4异种材料激光微焊接头裂纹研究 [J]. 航空科学技术, 2017, 28(4): 75)
[11] Li J, Zhang T C, Lang B. High-cycle fatigue property and fracture of linear friction welding joint in TC11 and TC17 [J]. Hot Working Technol., 2014, 43(11): 186
[11] (李 菊, 张田仓, 郎 波. TC11/TC17线性摩擦焊接头疲劳性能及断口分析 [J]. 热加工工艺, 2014, 43(11): 186)
[12] Dong Z J, Luo Z Q, Hu M H. Study on the process and tensile properties of laser welded Ti-22Al-27Nb alloy [J]. Aeronaut. Manuf. Technol., 2013, (4): 13
[12] (董智军, 罗志强, 胡明华. 激光焊接Ti-22Al-27Nb合金工艺性能研究 [J]. 航空制造技术, 2013, (4): 13)
[13] Zhang Q, Chen J, Han C X ,et al. The effect of laser repair heat affected zone depth on the tensile properties of TC17-TC11 dual alloy [J]. Appl. Laser, 2012, 32: 267
[13] (张 强, 陈 静, 韩昌旭等. 激光修复热影响区深度对TC17-TC11双合金拉伸性能的影响 [J]. 应用激光, 2012, 32: 267)
[14] Qu H P, Li P, Zhang S Q ,et al. Microstructure and mechanical property of laser melting deposition (LMD) Ti/TiAl structural gradient material [J]. Mater. Des., 2010, 31: 574
[15] Xu X J, Lin X, Yang M C ,et al. Dendrite structure evolution in Ti-20%Ni alloy prepared by laser solid forming [J]. Acta Metall. Sin., 2008, 44: 1013
[15] (许小静, 林 鑫, 杨模聪等. 激光立体成形Ti-20%Ni合金枝晶的组织演化 [J]. 金属学报, 2008, 44: 1013)
[16] Lin X, Yue T M, Yang H O ,et al. Solidification behavior and the evolution of phase in laser rapid forming of graded Ti6Al4V-Rene88DT alloy [J]. Metall. Mater. Trans., 2007, 38A: 127
[17] Lin X, Yue T M , Yang H O, et al. Laser rapid forming of SS316L/Rene88DT graded material [J]. Mater. Sci. Eng., 2005, A391: 325
[18] Shuai S S, Lin X, Xiao W Q, et al. Effect of transverse static magnetic field on microstructure of Al-12%Si alloys fabricated by powder-blow additive manufacturing [J]. Acta Metall. Sin., 2018, 54: 918
[18] (帅三三, 林 鑫, 肖武泉等. 横向静磁场对激光熔化增材制造Al-12%Si合金凝固组织的影响 [J]. 金属学报, 2018, 54: 918)
[19] Liu Y Y, Yao N, He L, et al. Effect of heat treatment on microstructure and properties of the joining interface for Ti3Al/TC11 by laser solid forming [J]. China Sci. Paper, 2014, 9: 234
[19] (刘莹莹, 姚 暖, 何 磊等. 热处理对激光立体成形Ti3Al/TC11连接界面组织性能的影响 [J]. 中国科技论文, 2014, 9: 234)
[20] Peng C, Zhang S Y, Ren L ,et al. Effect of cooling rate on microstructure and properties of a Cu-containing titanium alloy [J]. Acta Metall. Sin., 2017, 53: 1377
[20] (彭 聪, 张书源, 任 玲等. 冷却速率对含Cu钛合金显微组织和性能的影响 [J]. 金属学报, 2017, 53: 1377)
[21] Yu B B, Chen Z Y, Zhao Z B ,et al. Microstructure and mechanical properties of electron beam weldment of titanium alloy TC17 [J]. Acta Metall. Sin., 2016, 52: 831
[21] (于冰冰, 陈志勇, 赵子博等. TC17钛合金电子束焊接接头的显微组织与力学性能研究 [J]. 金属学报, 2016, 52: 831)
[22] Ma T, Liu T T, Liao W H, et al. Fatigue properties of Ti-6Al-4V produced by selective laser melting [J]. Chin. J. Lasers, 2018, 45: 1102012
[22] (马 涛, 刘婷婷, 廖文和等. 激光选区熔化成形Ti-6Al-4V疲劳性能研究 [J]. 中国激光, 2018, 45: 1102012)
[23] Zhou Q J, Yan Z Y, Han X ,et al. Microstructure and mechanical properties of laser melting deposited TC11 titanium alloys [J]. Chin. J. Lasers, 2018, 45: 1102005
[23] (周庆军, 严振宇, 韩 旭等. 激光熔化沉积TC11钛合金的组织与力学性能 [J]. 中国激光, 2018, 45: 1102005)
[24] Huang K Z, Zhou Y, Zhang B ,et al. Dry sliding friction and wear behavior of TC11 alloy with different tribo-layers [J]. Chin. J. Rare Met., 2018, 42: 601
[24] (黄柯植, 周 银, 张 波等. 不同摩擦层对TC11合金干滑动摩擦磨损行为的影响 [J]. 稀有金属, 2018, 42: 601)
[25] He B W, Ran X Z, Tian X J ,et al. Corrosion resistance research of laser additive manufactured TC11 titanium alloy [J]. Chin. J. Lasers, 2016, 43: 0403004
[25] (何博文, 冉先喆, 田象军等. 激光增材制造TC11钛合金的耐蚀性研究 [J]. 中国激光, 2016, 43: 0403004)
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[4] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[5] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[6] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[10] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[11] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[12] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[13] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[14] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[15] LIU Junpeng, CHEN Hao, ZHANG Chi, YANG Zhigang, ZHANG Yong, DAI Lanhong. Progress of Cryogenic Deformation and Strengthening-Toughening Mechanisms of High-Entropy Alloys[J]. 金属学报, 2023, 59(6): 727-743.
No Suggested Reading articles found!