Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 757-765    DOI: 10.11900/0412.1961.2017.00536
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
The Solidification Technology of Pulsed Magneto Oscillation
Yongyong GONG1,2, Shumin CHENG2, Yuyi ZHONG2, Yunhu ZHANG1, Qijie ZHAI1()
1 State Key Laboratory of Advanced Special Steel, Shanghai University, Shanghai 200072, China
2 College of Science, Shanghai University, Shanghai 200444, China
Cite this article: 

Yongyong GONG, Shumin CHENG, Yuyi ZHONG, Yunhu ZHANG, Qijie ZHAI. The Solidification Technology of Pulsed Magneto Oscillation. Acta Metall Sin, 2018, 54(5): 757-765.

Download:  HTML  PDF(5123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

With the development of metallurgical technology, some requirements such as high homogenization, high purification, superfine crystallization and low consumption have been put forward for the properties of metal materials. The pulse electromagnetic field has become the development direction of the new generation of metallurgy due to its energy saving, convenient application and refinement effect. The technology of pulse electromagnetic field in solidification includes electric current pulse, pulsed magnetic field and pulsed magneto oscillation (PMO). Based on the theories of pulsed current and electromagnetic stirring, the pulse current is applied to the induction coil in PMO technique. The melt is induced by magnetic field to produce electromagnetic force, and thereby, the non-contact treatment can be achieved to avoid dirtying the melt. In this paper, PMO technique is introduced, including invention process, theoretical basis, refinement mechanism, research status and its applications.

Key words:  electromagnetic field      pulsed magneto oscillation (PMO)      equiaxed grain      crystalnucleus      crystal shower      Lorentz force      flow velocity     
Received:  14 December 2017     
ZTFLH:  TG111.4  
Fund: Supported by National Natural Science Foundation of China (Nos.51504048, 50574056 and U1760204), and National Key Research and Development Program of China (No.2017YFB0701800)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00536     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/757

Fig.1  The structures of sample in axial when isolation network is placed horizontally[46]
(a) untreated (b) treated by pulsed magneto oscillation (PMO)
(c) treated by PMO when isolation network is unused=
Fig.2  The device of surface pulsed magneto oscillation (SPMO)[38]
(a) pulse generator (b) SPMO is imposed on the melt
Fig.3  The temperature curve under PMO[49]
Fig.4  Morphologies of solidified tissue refinement untreated (a) and treated (b) by PMO at 1.3 K above the melting point[54]
Fig.5  Relationship between the cooling rate and average grain size of samples treated and untreated by PMO[53]
Fig.6  Schematics of cooling curve (a) and local enlarged curve (b) when using PMO[53]
Fig.7  Grain size (a) and optical images (b) of samples after PMO treatment applied at various segments (Mean values in Fig.7a are presented above columns)[53]
Fig.8  The structures of sample in axial when isolation network is placed vertically untreated (a) and treated (b) by PMO[46]
Fig.9  Nucleation in a cylindrically shaped cavity (rc is cavity root radius; α, β and S are liquid, solid and foreign phases, respectively; θ is the contact angle; h is the height)[54]
Fig.10  The schematic of pulse magnetic oscillation test in second cold zone[57]
Fig.11  Macrostructures of cross section of GCr15 bearing steel billet treated (a) and untreated (b) by PMO (b)[57]
[1] Maxwell I, Hellawell A.A simple model for grain refinement during solidification[J]. Acta Metall., 1975, 23: 229
[2] Greer A L, Bunn A M, Tronche A, et al.Modelling of inoculation of metallic melts: Application to grain refinement of aluminium by Al-Ti-B[J]. Acta Mater., 2000, 48: 2823
[3] Easton M A, Stjohn D H.A model of grain refinement incorporating alloy constitution and potency of heterogeneous nucleant particles[J]. Acta Mater., 2001, 49: 1867
[4] Ma Q, Cao P, Easton M A, et al.An analytical model for constitutional supercooling-driven grain formation and grain size prediction[J]. Acta Mater., 2010, 58: 3262
[5] Jian X, Xu H, Meek T T, et al.Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Mater. Lett., 2005, 59: 190
[6] Jian X G, Meek T T, Han Q Y.Refinement of eutectic silicon phase of aluminum A356 alloy using high-intensity ultrasonic vibration[J]. Scr. Mater., 2006, 54: 893
[7] Liu X B, Osawa Y, Takamori S, et al, Grain refinement of AZ91 alloy by introducing ultrasonic vibration during solidification[J]. Mater. Lett., 2008, 62: 2872
[8] Ramirez A, Ma Q, Davis B, et al.Potency of high-intensity ultrasonic treatment for grain refinement of magnesium alloys[J]. Scr. Mater., 2008, 59: 19
[9] Gao D M, Li Z J, Han Q Y, et al.Effect of ultrasonic power on microstructure and mechanical properties of AZ91 alloy[J]. Mater. Sci. Eng., 2009, A502: 2
[10] Shu D, Sun B D, Mi J W, et al.A high-speed imaging and modeling study of dendrite fragmentation caused by ultrasonic cavitation[J]. Metall. Mater. Trans., 2012, 43A: 3755
[11] Griffiths W D, McCartney D G. The effect of electromagnetic stirring during solidification on the structure of Al-Si alloys[J]. Mater. Sci. Eng., 1996, A216: 47
[12] Eckert S, Willers B, Nikrityuk P A, et al. Application of a rotating magnetic field during directional solidification of Pb-Sn alloys: Consequences on the CET [J]. Mater. Sci. Eng., 2005, A413-414: 211
[13] Willers B, Eckert S, Michel U, et al.The columnar-to-equiaxed transition in Pb-Sn alloys affected by electromagnetically driven convection[J]. Mater. Sci. Eng., 2005, A402: 55
[14] Metan V, Eigenfeld K, R?biger D, et al.Grain size control in Al-Si alloys by grain refinement and electromagnetic stirring[J]. J. Alloys Compd., 2009, 487: 163
[15] Kang C G, Yoon J H, Seo Y H.The upsetting behavior of semi-solid aluminum material fabricated by a mechanical stirring proces[J]. J. Mater. Process. Technol., 1997, 66: 30
[16] Sukumaran K, Pai B C, Chakraborty M.The effect of isothermal mechanical stirring on an Al-Si alloy in the semisolid condition[J]. Mater. Sci. Eng., 2004, A369: 275
[17] Vivès C.Effects of electromagnetic vibrations on the microstructure of continuously cast aluminium alloys[J]. Mater. Sci. Eng., 1993, A173: 169
[18] Li M J, Tamura T, Miwa K.Controlling microstructures of AZ31 magnesium alloys by an electromagnetic vibration technique during solidification: From experimental observation to theoretical understanding[J]. Acta Mater., 2007, 55: 4635
[19] Barnak J P, Sprecher A F, Conrad H.Colony (grain) size reduction in eutectic Pb-Sn castings by electroplusing[J]. Scr. Metall. Mater., 1995, 32: 879
[20] Gao Y L, Li Q S, Gong Y Y, et al.Comparative study on structural transformation of low-melting pure Al and high-melting stainless steel under external pulsed magnetic field[J]. Mater. Lett., 2007, 61: 4011
[21] Fang Y, Liao X L, Gan C H, et al.Effects of pulsed electric current with main frequency and low voltage on grain refinement of pure aluminum[J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 141(方燕, 廖希亮, 甘长红等. 中频低压脉冲电流对纯铝凝固组织的影响[J]. 特种铸造及有色合金, 2006, 26: 141)
[22] Song C J, Guo Y Y, Zhang Y H, et al.Effect of currents on the microstructure of directionally solidified Al-4.5wt%Cu alloy[J]. J. Cryst. Growth, 2011, 324: 235
[23] Vashchenko K I, Chernega D F, Vorobev S L, et al.Effect of electric current on the solidification of cast iron[J]. Met. Sci. Heat Treat., 1974, 16: 261
[24] Zi B T, Liu W J, Yao K F.Study of pulsed magnetic field and pulsed magnetic force during solidification[J]. Tianjin Metall., 2002, (6): 8(訾炳涛, 刘文今, 姚可夫. 凝固过程中的脉冲磁场和脉冲磁力研究[J]. 天津冶金, 2002, (6): 8)
[25] Nakada M, Shiohara Y, Flemings M C.Modification of solidification structures by pulse electric discharging[J]. ISIJ Int., 1990, 30: 27
[26] Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[27] Xu Z, Wang X, Liang D, et al.Electric current pulse induced grain refinement in pure aluminium[J]. Mater. Sci. Technol., 2015, 31: 1595
[28] Long P, Wen H, Gu B P.Effects of electric current pulses on mechanical properties and microstructures of as-quenched medium carbon steel[J]. Mater. Sci. Eng., 2016, A662: 404
[29] Lu B, Yang X J, Zhou J, et al.Effect of electric current on diffusion of aluminum in Ti3AlC2 into zirconium alloy[J]. J. Wuhan Univ. Technol. Mater. Sci. Ed., 2017, 32: 645
[30] Chen H, Jie J C, Fu Y, et al.Grain refinement of pure aluminum by direct current pulsed magnetic field and inoculation[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 1295
[31] Zhang Y J, Hua J S, Wang E G, et al.Numerical analysis of electromagnetic field in the molten steel under pulsed magnetic field[J]. Mater. Sci. Technol., 2010, 18: 639(张永杰, 华骏山, 王恩刚等. 脉冲磁场作用于钢液熔体的电磁场数值模拟[J]. 材料科学与工艺, 2010, 18: 639)
[32] Yan C L, Wang F M, Zhang Q J.Effect of low pressure pulse magnetic field on solidification structure of 45 steel[J]. Met. Funct. Mater., 2015, 22(6): 24(严春亮, 王凤鸣, 张庆军. 低压脉冲磁场对45钢凝固组织的影响[J]. 金属功能材料, 2015, 22(6): 24)
[33] Mei G H, Zhu L G, Zhang Q J, et al.Research status of grain refinement technology with pulsed magnetic field[J]. Foundry Technol., 2015, 36: 403(梅国宏, 朱立光, 张庆军等. 脉冲磁场细晶化技术的研究现状[J]. 铸造技术, 2015, 36: 403)
[34] Zhang D P, Li B, Li L J.Effect of pulse magnetic field on primary recrystallization grain size of high magnetic induction oriented silicon steel[J]. Heat Treat. Met., 2017, 42(3): 34(张大平, 李斌, 李莉娟. 脉冲磁场对高磁感取向硅钢初次再结晶晶粒尺寸的影响[J]. 金属热处理, 2017, 42(3): 34)
[35] Zhang Y H, Zhong H G, Zhai Q J.Research progress of grain refinement and homogenization of solidified metal alloys driven by pulsed electromagnetic fields[J]. J. Iron Steel Res., 2017, 29: 249(张云虎, 仲红刚, 翟启杰. 脉冲电磁场凝固组织细化和均质化技术研究与应用进展[J]. 钢铁研究学报, 2017, 29: 249)
[36] Liu F, Zhang L Y.Numerical simulation of magnetic field and flow field distributions during pure aluminum solidification under pulse magneto-oscillation[J]. Foundry, 2012, 61: 285(刘芳, 张璐云. 脉冲磁致振荡下纯铝凝固磁场与流场分布的数值模拟[J]. 铸造, 2012, 61: 285)
[37] Pei N, Li R X.Mechanism of pulse magneto-oscillation grain refinement on pure Al[J]. China Foundry, 2011, 8: 47
[38] Yin Z X, Gong Y Y, Li B, et al.Refining of pure aluminum cast structure by surface pulsed magneto-oscillation[J]. J. Mater. Process. Technol., 2012, 212: 2629
[39] Zhai Q J, Gong Y Y, Gao Y L, et al.Method and apparatus for fining metal solidified organs by using magneto-oscillation [P]. Chin Pat, CN200510030736.4, 2006(翟启杰, 龚永勇, 高玉来等. 磁致振荡细化金属凝固组织的方法及其装置 [P]. 中国专利, CN200510030736.4, 2006)
[40] Liang D, Liang Z Y, Zhai Q J, et al.Nucleation and grain formation of pure Al under pulsed magneto-oscillation treatment[J]. Mater. Lett., 2014, 130: 48
[41] Li B, Yin Z X, Gong Y Y, et al.Effect of pouring temperature on solidification structure of pure Al under pulse magneto-oscillation[J]. J. Shanghai Univ.(Nat. Sci. Ed.), 2012, 18: 323(李博, 尹振兴, 龚永勇等. 浇注温度对脉冲磁致振荡细化纯铝凝固组织的影响[J]. 上海大学学报(自然科学版), 2012, 18: 323)
[42] Li Q X.The study of the solidification structure of large steel ingots was refined by using the SPM [D]. Shanghai: Shanghai University, 2014(李祺欣. 应用冒口脉冲磁致振荡技术细化大型钢锭凝固组织的探索研究 [D]. 上海: 上海大学, 2014?)
[43] Li Q X, Liang D, Zhai Q J, et al.The solidification structure refinement of SWRCH22A steel billet under pulse magneto-oscillation treatment [A]. TMS 2015 144th Annual Meeting Supplemental Proceedings[C]. Cham: Springer, 2015: 67
[44] Zhang X Z, Zhao J, Yu J H, et al.The effect of surface pulsed magneto-oscillation on solidification of low pressure rotor 30Cr2Ni4MoV steel [A]. TMS 2015 144th Annual Meeting Supplemental Proceedings[C]. Cham: Springer, 2015: 89
[45] Cao T Y, Zhai Q J, Li R X, et al.Effect of magnetic oscillation on inner structure of 65Mn steel[J]. Res. Iron Steel, 2014, 42(6): 35(曹同友, 翟启杰, 李仁兴等. 磁致振荡对65Mn钢铸锭内部组织的影响[J]. 钢铁研究, 2014, 42(6): 35)
[46] Gong Y Y, Luo J, Jing J X, et al.Structure refinement of pure aluminum by pulse magneto-oscillation[J]. Mater. Sci. Eng., 2008, A497: 147
[47] Xu Z S, Li Q X, Liang Z Y, et al.Morphology of the Al-4.5wt% Cu alloy by pulse magneto oscillation treatment[J]. Shanghai Met., 2015, 37(2): 31(徐智帅, 李祺欣, 梁柱元等. 脉冲磁致振荡下Al-4.5wt%Cu合金微观组织形态[J]. 上海金属, 2015, 37(2): 31)
[48] Li Q X, Yu J H, Liang D, et al.Refinement mechanism study of commercial pure Al under pulsed magneto oscillation[J]. Shanghai Met., 2015, 37(4): 4(李祺欣, 俞基浩, 梁冬等. 脉冲磁致振荡细化工业纯铝机制研究[J]. 上海金属, 2015, 37(4): 48)
[49] Liang D, Liang Z Y, Zhai Q J, et al.Nucleation and grain formation of pure Al under Pulsed Magneto-Oscillation treatment[J]. Mater. Lett., 2014, 130: 48
[50] Li B, Yin Z X, Gong Y Y, et al.Effect of temperature field on solidification structure of pure Al under pulse magneto-oscillation[J]. China Foundry, 2011, 8: 172
[51] Zhao J, Cheng Y F, Han K, et al.Numerical and experimental studies of surface-pulsed magneto-oscillation on solidification[J]. J. Mater. Process. Technol., 2016, 229: 286
[52] Liu T Y, Sun J, Sheng C, et al.Influence of pulse magneto-oscillation on the efficiency of grain refiner[J]. Adv. Manuf., 2017, 5: 143
[53] Edry I, Mordechai T, Frage N, et al.Effects of treatment duration and cooling rate on pure aluminum solidification upon pulse magneto-oscillation treatment[J]. Metall. Mater. Trans., 2016, 47A: 1261
[54] Edry I, Erukhimovitch V, Shoihet A, et al.Effect of impurity levels on the structure of solidified aluminum under pulse magneto-oscillation (PMO)[J]. J. Mater. Sci., 2013, 48: 8438
[55] Edry I, Frage N, Hayun S.The effect of pulse magneto-oscillation treatment on the structure of aluminum solidified under controlled convection[J]. Mater. Lett., 2016, 182: 118
[56] Ban C Y, Cui J Z, Ba Q X, et al.Influence of strong pulsed magnetic field on microstructures of LY12 aluminum alloy[J]. Spec. Cast. Nonferrous Alloys, 2002, 22(4): 12(班春燕, 崔建忠, 巴启先等. 强脉冲磁场对LY12铝合金组织结构的影响[J]. 特种铸造及有色合金, 2002, 22(4): 12)
[57] Cheng Y, Xu Z S, Zhou Z, et al.Application of PMO solidification homogenization technology in continuous casting production of GCr15 bearing steel[J]. Shanghai Met., 2016, 38(4): 54(程勇, 徐智帅, 周湛等. PMO凝固均质化技术在连铸GCr15轴承钢生产中的应用[J]. 上海金属, 2016, 38(4): 54)
[58] Ni J, Wu C S, Zhong H G, et al.Solidification structure refinement of 2205 duplex stainless steel by pulse magneto-oscillation [A]. TMS 2015 144th Annual Meeting & Exhibition[C]. Cham: Springer, 2015: 39
[1] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[2] ZHENG Jincan, LIU Runcong, WANG Xiaodong. Online Electromagnetic Measurement of Molten Zinc Surface Velocity in Hot Galvanized Process[J]. 金属学报, 2020, 56(7): 929-936.
[3] REN Zhongming,LEI Zuosheng,LI Chuanjun,XUAN Weidong,ZHONG Yunbo,LI Xi. New Study and Development on Electromagnetic Field Technology in Metallurgical Processes[J]. 金属学报, 2020, 56(4): 583-600.
[4] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[5] Ran TAO, Yutao ZHAO, Gang CHEN, Xizhou KAI. Microstructure and Properties of In-Situ ZrB2 np/AA6111 Composites Synthesized Under an Electromagnetic Field[J]. 金属学报, 2019, 55(1): 160-170.
[6] Qiang WANG, Ming HE, Xiaowei ZHU, Xianliang LI, Chunlei WU, Shulin DONG, Tie LIU. Study and Development on Numerical Simulation for Application of Electromagnetic Field Technologyin Metallurgical Processes[J]. 金属学报, 2018, 54(2): 228-246.
[7] Fei WANG,Engang WANG,Peng JIA,Tao WANG,Anyuan DENG. Effect of Electromagnetic Continuous Casting on TiN Distribution and Internal Crack of Incoloy800H Alloy Billet[J]. 金属学报, 2017, 53(1): 97-106.
[8] Cheng BI, Zhipeng GUO, E LIOTTI, Shoumei XIONG, P S GRANT. QUANTIFICATION STUDY ON DENDRITE FRAGMENTATION IN SOLIDIFICATION PROCESS OF ALLUMINUM ALLOYS[J]. 金属学报, 2015, 51(6): 677-684.
[9] GAO Zhongtang, HU Rui, WANG Jun, YANG Jieren, LI Jinshan. EFFECT OF ELECTROMAGNETIC MELT TREATMENT NEAR LIQUIDUS ON THE FORMATION OF NON-DENDRITE MICROSTRUCTURE OF SUPERALLOY[J]. 金属学报, 2014, 50(12): 1471-1477.
[10] JIA Peng, WANG Engang, LU Hui, HE Jicheng. EFFECT OF ELECTROMAGNETIC FIELD ON MICRO-STRUCTURE AND MECHANICAL PROPERTY FOR INCONEL 625 SUPERALLOY[J]. 金属学报, 2013, 49(12): 1573-1580.
[11] WANG Fang LI Baokuan. ANALYSIS OF ELECTROMAGNETIC FIELD AND JOULE HEATING OF ELECTROSLAG REMELTING PROCESSES[J]. 金属学报, 2010, 46(7): 794-799.
[12] DU Huiling WANG Jianzhong QI Jingang HE Lijia CANG Daqiang . EFFECTS OF PULSED ELECTROMAGNETIC FIELD ON CoC2O4·2H2O POWDER SIZE[J]. 金属学报, 2009, 45(8): 1019-1024.
[13] XU Xiujie DENG Anyuan WANG Engang ZHANG Lintao ZHANG Xingwu ZHANG Yongjie HE Jicheng . EVOLVEMENT MECHANISM OF SURFACE OSCILLA- TION MARKS ON ROUND BILLET DURING SOFT–CONTACT ELECTROMAGNETIC CONTINUOUS CASTING[J]. 金属学报, 2009, 45(4): 464-469.
[14] XU Xiujie DENG Anyuan WANG Engang ZHANG Lintao ZHANG Yongjie HE Jicheng. EFFECT MECHANISM OF HIGH FREQUENCY ELECTROMAGNETIC FIELD ON THE SURFACE QUALITY AND EQUIAXED CRYSTAL RATIO OF 15CrMo BILLET[J]. 金属学报, 2009, 45(11): 1330-1335.
[15] YU Haiqi ZHU Miaoyong. 3-D NUMERICAL SIMULATION OF FLOW FIELD AND TEMPERATURE FIELD IN A ROUND BILLET CONTINUOUS CASTING MOLD WITH ELECTROMAGNETIC STIRRING[J]. 金属学报, 2008, 44(12): 1465-1473.
No Suggested Reading articles found!