Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 265-277    DOI: 10.11900/0412.1961.2017.00294
Orginal Article Current Issue | Archive | Adv Search |
Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding
Chuansong WU(), Hao SU, Lei SHI
Key Laboratory for Liquid-Solid Structure Evolution and Materials Processing (Ministry of Education), Shandong University, Jinan 250061, China
Cite this article: 

Chuansong WU, Hao SU, Lei SHI. Numerical Simulation of Heat Generation, Heat Transfer and Material Flow in Friction Stir Welding. Acta Metall Sin, 2018, 54(2): 265-277.

Download:  HTML  PDF(8067KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The heat generation, heat transfer and plasticized material flow in friction stir welding determine directly the microstructure evolution and mechanical properties of weld joints. Numerical simulation of these thermo-physical phenomena is of great significance for getting a deep insight into the underlying mechanisms and optimizing the process parameters of friction stir welding. This article reviews the progress status in numerical simulation of heat generation, heat transfer and plasticized material flow behaviors in friction stir welding, and outlines the unsolved problems. The research work targeting these issues, which has been conducted by the authors' group, is introduced. According to the stress characteristics at the tool-workpiece interface, the expressions of sticking rate and friction coefficient are developed, and this measurement-calculation method lays foundation for improving the accuracy of numerical analysis. Through synthetically considering the characteristics of complex-shaped tools, a three dimensional model of friction stir welding process is established. Three types of tools are taken into consideration, i.e., normal CT (conical-pin tool), ST (conical-pin with 4 flats tool) and TT (conical-pin with 3 flats tool). For the cases in application of these tools, the heat generation, temperature profile, and material flow velocity are analyzed quantitatively. A mathematical model for the whole friction stir welding process including plunge stage, dwell stage, welding stage, and cooling stage is established for numerical analysis of transient development in heat generation rate, temperature and material flow fields in each stages. Based on the status review, the trend in numerical simulation of frictions stir welding is outlooked, and the research focus for next step is proposed.

Key words:  friction stir welding      heat generation      heat transfer      material flow      numerical simulation     
Received:  17 July 2017     
Fund: Supported by National Natural Science Foundation of China (No.51475272)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00294     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/265

Fig.1  The influence factors of heat generation in friction stir welding (FSW)
Fig.2  Heat generation distribution[12] (AS—advancing side, RS—retreating side)(a) heat flux generated by interfacial friction(b) volumetric heat density generated by plastic deformation
Case No. ω / (rmin-1) U / (mmmin-1) Mc / (Nm) δ μf
1 400 80 29.26 0.497 0.370
2 400 160 33.84 0.575 0.506
3 600 80 21.89 0.372 0.221
4 800 40 12.45 0.254 0.106
5 800 80 13.56 0.276 0.119
6 800 120 13.36 0.272 0.117
7 800 160 14.32 0.292 0.129
8 800 200 15.36 0.313 0.142
9 800 240 16.85 0.343 0.163
10 1000 80 10.11 0.206 0.081
Table 1  The calculated sticking coefficients and friction coefficients under different conditions
Fig.3  Schematic drawings of FSW process (a) and different stages in FSW (b) (vp—plunge speed, vw—welding speed)
Fig.4  Calculated heat generation versus time during the FSW process[38]
Fig.5  Calculated temperature distributions at a transverse section during the plunge stage[38]
(a) 4.5 s (b) 15.0 s (c) 24.9 s (d) 28.2 s
Fig.6  Calculated temperature distributions at a transverse cross-section during the dwell and welding stages[38]
(a) 28.51 s (b) 30.0 s (c) 37.9 s (d) 45.0 s (e) 50.1 s (f) 60.0 s
Fig.7  The predicted streamlines near the tool during the welding stage at a plane 2 mm below the top surface of workpiece (75.0 s) [38]
Fig.8  Cross-sections of various pin profiles?(a) cylindrical (b) triflat(c) triflute (d) trivex (e) square
Fig.9  Cross-sections of triflute pin at different time in one rotation cycle (t0—a specific moment, tp—rotation cycle)
Fig.10  Temperature evolution at two points of z=3 mm plane during tool rotating (TT, Case No.5)[45]
Fig.11  Volumetric heat density distributions inside the shear layer (Case No.9)[44](a) z=5.5 mm (b) z=2.5 mm
Fig.12  Plastic flow (left) and streamline (right) distributions at z=3 mm plane (Case No.7)(a) CT (b) ST (c) TT
[1] Dursun T, Soutis C.Recent developments in advanced aircraft aluminium alloys[J]. Mater. Des., 2014, 56: 862
[2] Mishra R S, De P S, Kumar N.Friction stir welding and processing[M]. New York: Springer, 2014: 11
[3] Wang G Q, Zhao Y H.Friction stir welding of aluminum alloys [M]. Beijing: China Astronautic Publishing House, 2010: 8(王国庆, 赵衍华. 铝合金的搅拌摩擦焊接 [M]. 北京: 中国宇航出版社, 2010: 8)
[4] Mishra R S, Ma Z Y.Friction stir welding and processing[J]. Mater. Sci. Eng., 2005, R50: 1
[5] Nandan R, DebRoy T, Bhadeshia H K D H. Recent advances in friction-stir welding-process, weldment structure and properties[J]. Prog. Mater. Sci., 2008, 53: 980
[6] He X C, Gu F S, Ball A.A review of numerical analysis of friction stir welding[J]. Prog. Mater. Sci., 2014, 65: 1
[7] Schmidt H, Hattel J, Wert J.An analytical model for the heat generation in friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2003, 12: 143
[8] Nandan R, Roy G G, Lienert T J, et al.Three-dimensional heat and material flow during friction stir welding of mild steel[J]. Acta Mater., 2007, 55: 883
[9] Shi L, Wu C S, Liu H J.Analysis of heat transfer and material flow in reverse dual-rotation friction stir welding[J]. Weld. World, 2015, 59: 629
[10] Chen G Q, Shi Q Y.Recent advances in numerical simulation of material flow behavior during frictions stir welding[J]. J. Mech. Eng., 2015, 51(22): 11(陈高强, 史清宇. 搅拌摩擦焊中材料流动行为数值模拟的研究进展[J]. 机械工程学报, 2015, 51(22): 11)
[11] Simar A, Bréchet Y, De Meester B, et al.Integrated modeling of friction stir welding of 6xxx series Al alloys: Process, microstructure and properties[J]. Prog. Mater. Sci., 2012, 57: 95
[12] Chen G Q, Shi Q Y, Fujiya Y, et al.Simulation of metal flow during friction stir welding based on the model of interactive force between tool and material[J]. J. Mater. Eng. Perform., 2014, 23: 1321
[13] Su H, Wu C S, Bachmann M, et al.Numerical modeling for the effect of pin profiles on thermal and material flow characteristics in friction stir welding[J]. Mater. Des., 2015, 77: 114
[14] Hamilton C, Sommers A, Dymek S.A thermal model of friction stir welding applied to Sc-modified Al-Zn-Mg-Cu alloy extrusions[J]. Int. J. Mach. Tools Manuf., 2009, 49: 230
[15] Bastier A, Maitournam M H, Van K D, et al.Steady state thermos mechanical modelling of friction stir welding[J]. Sci. Technol. Weld. Join., 2006, 11: 278
[16] Heurtier P, Jones M J, Desrayaud C, et al.Mechanical and thermal modelling of friction stir welding[J]. J. Mater. Process. Technol., 2006, 171: 348
[17] Liechty B C, Webb B W.Modeling the frictional boundary condition in friction stir welding[J]. Int. J. Mach. Tools Manuf., 2008, 48: 1474
[18] Schmidt H N B, Dickerson T L, Hattel J H. Material flow in butt friction stir welds in AA2024-T3[J]. Acta Mater., 2006, 54: 1199
[19] Colegrove P A, Shercliff H R.3-Dimensional CFD modelling of flow round a threaded friction stir welding tool profile[J]. J. Mater. Process. Technol., 2005, 169: 320
[20] Su H, Wu C S, Pittner A, et al.Thermal energy generation and distribution in friction stir welding of aluminum alloys[J]. Energy, 2014, 77: 720
[21] Haghpanahi M, Salimi S, Bahemmat P, et al.3-D transient analytical solution based on Green's function to temperature field in friction stir welding[J]. Appl. Math. Modell., 2013, 37: 9865
[22] Vila?a P, Quintino L, Dos Santos J F, et al. Quality assessment of friction stir welding joints via an analytical thermal model, iSTIR[J]. Mater. Sci. Eng., 2007, A445: 501
[23] Ferro P, Bonollo F.A semianalytical thermal model for fiction stir welding[J]. Metall. Mater. Trans., 2010, 41A: 440
[24] Mendez P F, Tello K E, Lienert T J.Scaling of coupled heat transfer and plastic deformation around the pin in friction stir welding[J]. Acta Mater., 2010, 58: 6012
[25] Roy G G, Nandan R, DebRoy T. Dimensionless correlation to estimate peak temperature during friction stir welding[J]. Sci. Technol. Weld. Joining, 2006, 11: 606
[26] Chao Y J, Qi X, Tang W.Heat transfer in friction stir welding-experimental and numerical studies[J]. J. Manuf. Sci. Eng., 2003, 125: 138
[27] Li T, Shi Q Y, Li H K.Residual stresses simulation for friction stir welded joint[J]. Sci. Technol. Weld. Join., 2007, 12: 664
[28] Li H K, Shi Q Y, Zhao H Y, et al.Auto-adapting heat source model for numerical analysis of friction stir welding[J]. Trans. China Weld. Inst., 2006, 27(11): 81(李红克, 史清宇, 赵海燕等. 热量自适应搅拌摩擦焊热源模型[J]. 焊接学报, 2006, 27(11): 81)
[29] Khandkar M Z H, Khan J A, Reynolds A P. Prediction of temperature distribution and thermal history during friction stir welding: Input torque based model[J]. Sci. Technol. Weld. Join., 2003, 8: 165
[30] Hamilton C, Dymek S, Sommers A.A thermal model of friction stir welding in aluminum alloys[J]. Int. J. Mach. Tools Manuf., 2008, 48: 1120
[31] Schmidt H, Hattel J.A local model for the thermomechanical conditions in friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2004, 13: 77
[32] Guerdoux S, Fourment L.A 3D numerical simulation of different phases of friction stir welding[J]. Modell. Simul. Mater. Sci. Eng., 2009, 17: 075001
[33] Zhang Z, Zhang H W.Numerical Simulation of Friction Stir Welding [M]. Beijing: Science Press, 2016: 8(张昭, 张洪武. 搅拌摩擦焊的数值模拟 [M]. 北京: 科学出版社, 2016: 8)
[34] Colegrove P A, Shercliff H R.Two-dimensional CFD modelling of flow round profiled FSW tooling[J]. Sci. Technol. Weld. Join., 2004, 9: 483
[35] Colegrove P A, Shercliff H R.Development of Trivex friction stir welding tool Part 2—Three-dimensional flow modelling[J]. Sci. Technol. Weld. Join., 2004, 9: 352
[36] Nandan R, Roy G G, Debroy T.Numerical simulation of three-dimensional heat transfer and plastic flow during friction stir welding[J]. Metall. Mater. Trans., 2006, 37A: 1247
[37] Chen G Q, Shi Q Y, Li Y J, et al.Computational fluid dynamics studies on heat generation during friction stir welding of aluminum alloy[J]. Comput. Mater. Sci., 2013, 79: 540
[38] Shi L, Wu C S.Transient model of heat transfer and material flow at different stages of friction stir welding process[J]. J. Manuf. Process., 2017, 25: 323
[39] Rai R, De A, Bhadeshia H K D H, et al. Review: Friction stir welding tools[J]. Sci. Technol. Weld. Join., 2011, 16: 325
[40] Biswas P, Mandal N R.Effect of tool geometries on thermal history of FSW of AA1100[J]. Weld. J., 2011, 90: 129
[41] Gadakh V S, Kumar A, Patil G J V. Analytical modeling of the friction stir welding process using different pin profiles[J]. Weld. J., 2015, 94: 115
[42] Mehta M, Reddy G M, Rao A V, et al.Numerical modeling of friction stir welding using the tools with polygonal pins[J]. Defence Technol., 2015, 11: 229
[43] Mehta M, Arora A, De A, et al.Tool geometry for friction stir welding-optimum shoulder diameter[J]. Metall. Mater. Trans., 2011, 42A: 2716
[44] Su H.Effect of tool pin profiles on thermal field and plastic material flow in friction stir welding [D]. Ji'nan: Shandong University, 2015(宿浩. 搅拌针截面形状对搅拌摩擦焊接热过程和塑性材料流动的影响 [D]. 济南: 山东大学, 2015)
[45] Ji S D, Shi Q Y, Zhang L G, et al.Numerical simulation of material flow behavior of friction stir welding influenced by rotational tool geometry[J]. Comput. Mater. Sci., 2012, 63: 218
[46] Feulvarch E, Roux J C, Bergheau J M.A simple and robust moving mesh technique for the finite element simulation of friction stir welding[J]. J. Comput. Appl. Math., 2013, 246: 269
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[8] HE Changshu, QIE Mofan, ZHANG Zhiqiang, ZHAO Xiang. Effect of Axial Ultrasonic Vibration on Metal Flow Behavior During Friction Stir Welding[J]. 金属学报, 2021, 57(12): 1614-1626.
[9] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[10] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[11] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[12] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[13] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[14] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[15] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
No Suggested Reading articles found!