Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1693-1704    DOI: 10.11900/0412.1961.2018.00331
Mechanical Properties Current Issue | Archive | Adv Search |
Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials
Zhefeng ZHANG(), Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Cite this article: 

Zhefeng ZHANG, Rui LIU, Zhenjun ZHANG, Yanzhong TIAN, Peng ZHANG. Exploration on the Unified Model for Fatigue Properties Prediction of Metallic Materials. Acta Metall Sin, 2018, 54(11): 1693-1704.

Download:  HTML  PDF(5438KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The fatigue of metallic materials can be divided into high-cycle fatigue (HCF) and low-cycle fatigue (LCF); the damage of these two types of fatigue is commonly evaluated through stress amplitude and strain amplitude of cyclic loading, respectively. The mismatch of the evaluation standards between HCF and LCF leads to difficulties in the design and selection of anti-fatigue materials. Under this condition, systematic researches on fatigue properties and microscopic damage mechanisms of HCF, LCF and extra-low-cycle fatigue (ELCF) for pure Cu and Cu-Al alloys were summarized in this work. On the bases of the experimental results, a three-dimensional fatigue model is proposed, which is simultaneously applicable to both the HCF and LCF properties. The model is built up in a three-dimensional coordinate system of stress amplitude-strain amplitude-fatigue life; it could be associated with the cyclic stress-strain (CSS) curve, S-N curve and E-N curve through the projection method, or be transformed into the Basquin equation, Coffin-Manson equation and hysteretic energy model under specific conditions. In this way, this generally applicable fatigue model helps provide a new viewpoint for the evaluation and optimization of fatigue properties based on the classical fatigue theories.

Key words:  metallic material      high-cycle fatigue      low-cycle fatigue      fatigue damage parameter      fatigue property prediction     
Received:  18 July 2018     
ZTFLH:  TG111.8  
Fund: Supported by National Natural Science Foundation of China (Nos.51331007, 51501198 and 51771208) and the Strategic Priority Research Program of Chinese Academy of Sciences (No.XDB22020202)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00331     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1693

Fig.1  S-N curves of high-cycle fatigue (HCF) of coarse-grain (CG) materials (a), fine-grain (FG) materials (b), ultra-fine-grain (UFG) materials (c) and nano-grain (NG) materials (d) in pure Cu and Cu-Al alloys (ECAP—equal-channel angular pressing, HPT—high-pressure torsion, CR—cold-rolling, FSP—friction stir processing, Δσ/2—stress amplitude, Nf—cycles to failure)[12]
Fig.2  Low-cycle fatigue (LCF) properties of E-N curves (a) and S-N curves (b) for pure Cu and Cu-Al alloys (Δε/2—strain amplitude)[12]
Fig.3  Extra-low-cycle fatigue (ELCF) properties of pure Cu and Cu-Al alloys including stabilized cyclic stress-strain (CSS) hysteresis loops with Δε/2=6.0% (a), stabilized CSS hysteresis loops of Cu-8%Al alloy with various strain amplitudes (b), CSS curves (c), E-N curves (d), S-N curves (e) and W-N curves (f) (Wa—hysteresis energy)[12]
Fig.4  Microstructure evolution of pure Cu and Cu-Al alloys during fatigue tests[12]
(a1~a3) original states of CG, UFG and NG materials, respectively
(b1~b3) microstructures of Cu-5%Al, Cu-11%Al and Cu-15%Al after HCF tests, respectively
(c1~c3) microstructures of pure Cu, Cu-5%Al and Cu-11%Al after LCF tests, respectively
(d1~d3) microstructures of Cu-5%Al, Cu-8%Al and Cu-11%Al after ELCF tests, respectively
Fig.5  Construction and projection of the three-dimensional fatigue model including hysteresis loop planes, space curve and projected CSS curve (a), space curve and projected S-N curve (b), space curve and projected E-N curve (c) and space plane of the three-dimensional fatigue model, as well as the definition of energy-based evaluation criterion Wf (d)
Microstructure Material lg(σ0 / MPa) lg(ε0 / 106) lgNf0 lg(Wf / (MJm-3))
CG Cu 10.56 4.56 25.96 35.09
5Al 9.80 4.21 46.26 54.26
11Al 10.20 4.52 41.88 50.61
15Al 10.40 4.63 39.91 48.95
FG 5Al 9.94 4.69 44.70 53.33
11Al 9.89 4.85 57.12 65.87
15Al 10.61 5.02 56.96 66.60
UFG Cu 10.30 4.93 37.08 46.30
5Al 9.16 5.08 41.63 49.86
11Al 10.16 5.31 39.72 49.19
15Al 11.23 5.37 42.59 53.19
NG-CR 5Al-CR 11.43 5.48 32.64 43.54
NG-ECAP Cu-ECAP 11.94 5.60 22.31 33.86
5Al-ECAP 11.79 5.66 25.59 37.04
11Al-ECAP 11.69 5.81 27.15 38.65
NG-HPT Cu-HPT 12.27 5.76 20.76 32.79
5Al-HPT 12.48 5.97 22.82 35.26
15Al-HPT 12.28 6.08 23.86 36.22
Table 1  Typical values of parameters in the three-dimensional fatigue model for pure Cu and Cu-Al alloys
Fig.6  Validation and plane fitting of the three-dimensional fatigue model for pure Cu (a1, a2), Cu-5%Al (b1, b2) and Cu-11%Al (c1, c2) produced by ECAP from overall view (a1~c1) and partial view (a2~c2) (Data points in black for HCF properties, and data points in red for LCF properties)
Fig.7  Evaluation of fatigue properties based on the three-dimensional fatigue model including plots of Wf against Al contents (a), plots of Wf against grain sizes (b), plots of Wf against Al contents, with materials under different processes (c) and three-dimensional plots of Wf against Al contents and grain sizes (d)
Fig.8  Optimization of fatigue properties based on the three-dimensional fatigue model
[1] Ashby M F.Materials Selection in Mechanical Design[M]. 4th Ed., Burlington: Butterworth-Heinemann, 2010: 1
[2] Meyers M A, Chawla K K.Mechanical Behavior of Materials [M]. 2nd Ed., New York: Cambridge University Press, 2005: 1
[3] Suresh S.Fatigue of Materials [M]. 2nd Ed., Cambridge: Cambridge University Press, 1998: 1
[4] Forrest P G.Fatigue of Metals [M]. Oxford: Pergamon Press, 1962: 1
[5] Zhao S B, Manual of Anti-Fatigue Design [M]. 2nd Ed., Beijing: China Machine Press, 2015: 1(赵少汴. 抗疲劳设计手册 [M]. 第2版. 北京: 机械工业出版社, 2015: 1)
[6] Basquin O H.The exponential law of endurance tests[J]. Am. Soc. Test. Mater., 1910, 10: 625
[7] Coffin L F Jr. A study of the effects of cyclic thermal stresses on a ductile metal[J]. Trans. ASTM, 1954, 76: 931
[8] Manson S S.Behavior of materials under conditions of thermal stress [R]. USA: National Advisory Committee for Aeronautics, 1953
[9] Callister W D Jr, Rethwisch D G. Materials Science and Engineering: An Introduction[M]. 8th Ed., John Wiley and Sons, Inc, 2010: 1
[10] Shao C W, Zhang P, Liu R, et al.Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: Property evaluation, damage mechanisms and life prediction[J]. Acta Mater., 2016, 103: 781
[11] Kim Y W, Kim G, Hong S G, et al.Energy-based approach to predict the fatigue life behavior of pre-strained Fe-18Mn TWIP steel[J]. Mater. Sci. Eng., 2011, A528: 4696
[12] Liu R.Investigations on Tensile and Fatigue Properties of Cu-Al alloys [D]. Beijing: University of Chinese Academy of Sciences, 2018(刘睿. 铜铝合金拉伸与疲劳性能研究 [D]. 北京: 中国科学院大学, 2018)
[13] Liu R, Zhang Z J, Zhang P, et al.Extremely-low-cycle fatigue behaviors of Cu and Cu-Al alloys: Damage mechanisms and life prediction[J]. Acta Mater., 2015, 83: 341
[14] Shimada K, Komotori J, Shimizu M.The applicability of the Manson-Coffin law and Miner's law to extremely low cycle fatigue[J]. Trans. Jpn. Soc. Mech. Eng., 1987, 53A: 1178
[15] Shao C W, Zhang P, Liu R, et al.A remarkable improvement of low-cycle fatigue resistance of high-Mn austenitic TWIP alloys with similar tensile properties: Importance of slip mode[J]. Acta Mater., 2016, 118: 196
[16] An X H, Wu S D, Wang Z G, et al.Enhanced cyclic deformation responses of ultrafine-grained Cu and nanocrystalline Cu-Al alloys[J]. Acta Mater., 2014, 74: 200
[17] An X H, Lin Q Y, Wu S D, et al.Improved fatigue strengths of nanocrystalline Cu and Cu-Al alloys[J]. Mater. Res. Lett., 2015, 3: 135
[18] Xue P, Huang Z Y, Wang B B, et al.Intrinsic high cycle fatigue behavior of ultrafine grained pure Cu with stable structure[J]. Sci. China Mater., 2016, 59: 531
[19] Liu R, Tian Y Z, Zhang Z J, et al.Exploring the fatigue strength improvement of Cu-Al alloys[J]. Acta Mater., 2018, 144: 613
[20] Liu R, Tian Y Z, Zhang Z J, et al.Fatigue strength plateau induced by microstructure inhomogeneity[J]. Mater. Sci. Eng., 2017, A702: 259
[21] Liu R, Zhang Z J, Zhang Z F.The criteria for microstructure evolution of Cu and Cu-Al alloys induced by cyclic loading[J]. Mater. Sci. Eng., 2016, A666: 123
[22] Valiev R Z, Islamgaliev R K, Alexandrov I V.Bulk nanostructured materials from severe plastic deformation[J]. Prog. Mater. Sci., 2000, 45: 103
[23] Valiev R.Nanostructuring of metals by severe plastic deformation for advanced properties[J]. Nat. Mater., 2004, 3: 511
[24] H?ppel H W, Zhou Z M, Mughrabi H, et al.Microstructural study of the parameters governing coarsening and cyclic softening in fatigued ultrafine-grained copper[J]. Philos. Mag., 2002, 82A: 1781
[25] Argon A S.Strengthening Mechanisms in Crystal Plasticity [M]. New York: Oxford University Press, 2008: 1
[26] Agnew S R, Vinogradov A Y, Hashimoto S, et al.Overview of fatigue performance of Cu processed by severe plastic deformation[J]. J. Electron. Mater., 1999, 28: 1038
[27] Kocks U F, Mecking H.Physics and phenomenology of strain hardening: The FCC case[J]. Prog. Mater. Sci., 2003, 48: 171
[28] Qu S, An X H, Yang H J, et al.Microstructural evolution and mechanical properties of Cu-Al alloys subjected to equal channel angular pressing[J]. Acta Mater., 2009, 57: 1586
[29] Liu R, Zhang Z J, Li L L, et al.Microscopic mechanisms contributing to the synchronous improvement of strength and plasticity (SISP) for TWIP copper alloys[J]. Sci. Rep., 2015, 5: 9550
[30] Li X Y, Lu K.Playing with defects in metals[J]. Nat. Mater., 2017, 16: 700
[31] Murr L E.Interfacial Phenomena in Metals and Alloys[M]. London: Addison-Wesley Educational Publishers Inc., 1975: 1
[32] An X H, Lin Q Y, Wu S D, et al.Significance of stacking fault energy on microstructural evolution in Cu and Cu-Al alloys processed by high-pressure torsion[J]. Philos. Mag., 2011, 91: 3307
[1] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[2] ZHOU Hongwei, GAO Jianbing, SHEN Jiaming, ZHAO Wei, BAI Fengmei, HE Yizhu. Twin Boundary Evolution Under Low-Cycle Fatigue of C-HRA-5 Austenitic Heat-Resistant Steel at High Temperature[J]. 金属学报, 2022, 58(8): 1013-1023.
[3] WANG Jiangwei, CHEN Yingbin, ZHU Qi, HONG Zhe, ZHANG Ze. Grain Boundary Dominated Plasticity in Metallic Materials[J]. 金属学报, 2022, 58(6): 726-745.
[4] ZHANG Xiancheng, ZHANG Yong, LI Xiao, WANG Zimeng, HE Chenyun, LU Tiwen, WANG Xiaokun, JIA Yunfei, TU Shantung. Design and Manufacture of Heterostructured Metallic Materials[J]. 金属学报, 2022, 58(11): 1399-1415.
[5] WEN Bin, TIAN Yongjun. Mechanical Behaviors of Nanotwinned Metals and Nanotwinned Covalent Materials[J]. 金属学报, 2021, 57(11): 1380-1395.
[6] LIU Ming, YAN Fuwen, GAO Chenghui. Effects of Progressive Normal Force on Microscratch Responses of Metallic Materials[J]. 金属学报, 2021, 57(10): 1333-1342.
[7] ZHOU Hongwei, BAI Fengmei, YANG Lei, CHEN Yan, FANG Junfei, ZHANG Liqiang, YI Hailong, HE Yizhu. Low-Cycle Fatigue Behavior of 1100 MPa Grade High-Strength Steel[J]. 金属学报, 2020, 56(7): 937-948.
[8] ZHANG Zhefeng,SHAO Chenwei,WANG Bin,YANG Haokun,DONG Fuyuan,LIU Rui,ZHANG Zhenjun,ZHANG Peng. Tensile and Fatigue Properties and Deformation Mechanisms of Twinning-Induced Plasticity Steels[J]. 金属学报, 2020, 56(4): 476-486.
[9] Mindong CHEN, Fan ZHANG, Zhiyong LIU, Chaohui YANG, Guoqing DING, Xiaogang LI. Galvanic Series of Metals and Effect of Alloy Compositions on Corrosion Resistance in Sanya Seawater[J]. 金属学报, 2018, 54(9): 1311-1321.
[10] Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials[J]. 金属学报, 2018, 54(11): 1525-1536.
[11] Yu PAN, Diantao ZHANG, Yuning TAN, Zhen LI, Yufeng ZHENG, Li LI. Mechanical Properties of Biomedical Ultrafine Grained Mg-3Sn-0.5Mn Alloy Processed by Equal-Channel Angular Pressing[J]. 金属学报, 2017, 53(10): 1357-1363.
[12] Xiaolong LIU,Chengqi SUN,Yantian ZHOU,Youshi HONG. EFFECTS OF MICROSTRUCTURE AND STRESS RATIO ON HIGH-CYCLE AND VERY-HIGH-CYCLE FATIGUE BEHAVIOR OF Ti-6Al-4V ALLOY[J]. 金属学报, 2016, 52(8): 923-930.
[13] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[14] GUO Qiang, GUO Xinglin, FAN Junling, WU Chengwei. RESEARCH ON HIGH-CYCLE FATIGUE BEHAVIOR OF FV520B STEEL BASED ON INTRINSIC DISSIPATION[J]. 金属学报, 2015, 51(4): 400-406.
[15] CHE Xin, LIANG Xingkui, CHEN Lili, CHEN Lijia, LI Feng. MICROSTRUCTURES AND LOW-CYCLE FATIGUE BEHAVIOR OF Al-9.0%Si-4.0%Cu-0.4%Mg(-0.3%Sc) ALLOY[J]. 金属学报, 2014, 50(9): 1046-1054.
No Suggested Reading articles found!