Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1665-1682    DOI: 10.11900/0412.1961.2018.00423
Materials and Processes Current Issue | Archive | Adv Search |
A Review on the Controlled Growth of Single-Wall Carbon Nanotubes from Metal Catalysts
Zhonghai JI1,2, Lili ZHANG1,2, Daiming TANG1,2(), Chang LIU1,2, Huiming CHENG1,3
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China
Cite this article: 

Zhonghai JI, Lili ZHANG, Daiming TANG, Chang LIU, Huiming CHENG. A Review on the Controlled Growth of Single-Wall Carbon Nanotubes from Metal Catalysts. Acta Metall Sin, 2018, 54(11): 1665-1682.

Download:  HTML  PDF(6465KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Single-wall carbon nanotubes (SWCNTs) with a unique tubular structure have exhibited excellent electrical, thermal and mechanical properties. However, their attractive applications in microelectronic devices and sensors are still pending due to the lack of high-quality, structure-defined SWCNTs. It is still a great challenge to grow pure and ordered SWCNTs with designated structures and properties. The key of breakthrough is to understand the fundamental nucleation and growth mechanism of SWCNTs under reaction conditions. In this article, we analyze the influences of physical and chemical properties, such as electronic structure, melting point, carbon solubility, and diffusivity, of catalyst nanoparticles on the productivity, purity, and fine structures of grown SWCNTs. The progress, current situation, and challenges on the controlled growth of SWCNTs are summarized. Finally, perspectives on future directions are presented and a strategy of structure-controlled production of SWCNTs is proposed.

Key words:  metal catalyst      single-wall carbon nanotube      structure control      growth mechanism     
Received:  08 September 2018     
Fund: Supported by National Natural Science Foundation of China (Nos.51522210, 51802316, 51521091, 51625203), National Key Research and Development Program of China (No.2016YFA0200101) and Hundred Talents Program of Chinese Academy of Sciences

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00423     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1665

Fig.1  A schematic showing the catalytic reaction, transport, nucleation and growth process of single-wall carbon nanotubes (SWCNTs)
Fig.2  In-situ TEM observations of the nucleation and growth of individual CNTs from Co (a), Fe (b), Au (c) and SiOx (d) catalyst nanoparticles (DWCNT—double-wall carbon nanotube, C'sup(t)—active carbon supply rate, C'inc(t)—carbon incorporation rate, t—time)[31,32,33]
Fig.3  Metal-carbon phase diagrams (T—temperature)[64,77]
(a) Ni-C eutectic phase diagram, red arrows represent vapor-liquid-solid (VLS) growth mechanism; green arrows represent vapor-solid-solid (VSS) growth mechanism
(b) nanoscale Ni-C phase diagram. The melting and eutectic points are dramatically lowered. The carbon solubility is increased and a new phase with fluctuation surface structures appears (xc—atomic fraction of carbon)
(c) Cu-C phase diagram. Carbon solubility is almost 0% in the solid phase
(d) W-C phase diagram, including stable W2C and WC phases. The melting and eutectic points are higher than 2500 ℃, much higher than the growth temperature of CNTs
Fig.4  Types of metal catalysts for SWCNT growth. The melting points are represented by the filled color of the blocks, with blue and red for low and high melting points, respectively. The types of the catalyst are marked by the colors of the frames: Fe group metals (green), Pt group metals (blue), coin metals (red), carbide formation metals (black) and oxide formation metals (purple)[90]
Group Property
Periodic table group Tm
Te
C
%
Carbide Ef
eV
Ea
eV
Ed
eV
Feature
Fe-group 8~10 1455~ 1148~ 4~8 Metastable 0.08~0.27[91] -1.4[35] 0.83~1.57[93] High active
(Fe, Co, Ni) 1538 1327 carbon solubility
Pt-group 8~10 1555~ 1400~ <3 Unstable >>0[91] -1.8[35] ~1.37[71] High catalytic
(Ru, Rh, Pt) 2334 1900 activity
Coin-group 11 961~ No ~0.01 Unstable >>0[91] -(0.04~0.6)[35] ~0.9[94] High diffusion
(Cu, Ag, Au) 1084 rate
Carbide-forming 4~7 2600~ 2300~ ~1 Stable -(0.6~1.8) [91] -0.3[92] ~3.0[68] High melting point
group (W, Mo) 3400 2800
Table 1  Property and Characteristics of Metal Catalyst for SWCNTs[35,68,71,91~94]
Fig.5  SWCNTs grown from Fe group metals catalysts[12,21,100,101]
(a) vertical array
(b) horizontal array
(c) semiconductor-enriched SWCNTs
(d) isolated SWCNTs films
Fig.6  SWCNTs grown by coin metals (Au, Cu)[49,51,78]
(a) TEM and SEM images of Au nanoparticles and grown SWCNTs, and PL spectra of SWCNTs grown at different temperatures
(b) growth of SWCNTs network and horizontal array from Cu nanoparticles
Fig.7  SWCNTs grown from bi-metallic catalysts[27,145,146]
(a) growth rates of metallic nanotubes on Ni, Cu and Ni-Cu catalysts
(b) selective growth of (6, 5) and (7, 5) SWCNTs from Co-Mo catalyst
(c) chirality-specific growth of SWCNTs from Co-W catalyst
Fig.8  SWCNTs grown from metal compound catalysts[150,151]
(a) selective growth of metallic or semiconducting SWCNTs by SiOx catalyst. (a1, b1) heating SiOx thin films to form nanoparticles; (c1, d1) relationship between O/Si ratios of SiOx nanoparticles and percentage of grown semiconducting or metallic SWCNTs; (e1, f1) Raman spectra and transistor performance based on metallic and semiconducting SWCNTs
(b) growth of semiconducting SWCNTs by Mo2C (a2), SEM image, Raman spectra, AFM analysis and diameter distribution of Mo2C catalyzed SWCNT arrays (b2~e2)
Group Property
Height Density tubes·μm-1 Length Growth rate μm·s-1 IG/ID Conductivity Chirality richness Feature
μm μm richness
Fe-group 10000[100] 130[102] 100000[157] 22.4[158] 200[11] 91%M[107]/95%S[21]/99.9%S[14] 53%(6, 5)[104] High yield
Pt-group - 5[156] 120[156] 0.13[156] 60[159] 90%S[161] (6, 5)/(7, 5)/(8, 4)[32] High activity
Coin metal - 60[116] 10000[78] 11.11[78] 45[160] 95%S[160, 162] (6, 5)[51] Nonmagnetic
Bimetal-group 36[155] 160[11] 185000[133] 40[133] 141[11] 96%S[13]/95%S[163] 97%(14, 4)[140]/ Chirality
92%(12, 6)[29]/ enriched
80%(16, 0)[139]
Carbide - 20[30] 185[30] 1.54[30] 22[30] 95%S[89]/ 80%(8, 4)/90%(12, 6)[30] Specific symmetry
90%S[151]
Oxide - 10[152] 196[152] 0.0083[149] 139[152] 80%M/ - Low growth rate
91%S[150]
Table 2  Structure controlled growth of SWCNTs from different catalysts[11,13,14,21,29,30,32,51,78,89,100,102,104,107,116,133,139,140,149~152,155~163]
Fig.9  Properties of metal catalysts: melting points, catalytic activity, carbon solubility and diffusion rate
(a) comparison of properties of different catalyst systems
(b) comparison of the properties of Co and Co alloys. Design strategy of multiple alloy catalyst for optimized growth yield, quality and structural control
[1] Yao Z, Kane C L, Dekker C.High-field electrical transport in single-wall carbon nanotubes[J]. Phys. Rev. Lett., 2000, 84: 2941
[2] Schindler G, Steinlesberger G, Engelhardt M, et al.Electrical characterization of copper interconnects with end-of-roadmap feature sizes[J]. Solid State Electron., 2003, 47: 1233
[3] Dürkop T, Getty S A, Cobas E, et al.Extraordinary mobility in semiconducting carbon nanotubes[J]. Nano Lett., 2004, 4: 35
[4] Avouris P, Chen Z, Perebeinos V.Carbon-based electronics[J]. Nat. Nanotechnol., 2007, 2: 605
[5] Berber S, Kwon Y K, Tománek D.Unusually high thermal conductivity of carbon nanotubes[J]. Phys. Rev. Lett., 2000, 84: 4613
[6] Krishnan A, Dujardin E, Ebbesen T W, et al.Young's modulus of single-walled nanotubes[J]. Phys. Rev., 1998, 58B: 14013
[7] Wang M S, Golberg D, Bando Y.Tensile tests on individual single-walled carbon nanotubes: Linking nanotube strength with its defects[J]. Adv. Mater., 2010, 22: 4071
[8] https://gg-lb.com/asdisp2-65b095fb-30818-.html
[9] http://digitalpaper.stdaily.com/http_www.kjrb.com/kjrb/html/2013-05/20/content_204072.htm?div=-1
[10] Franklin A D.The road to carbon nanotube transistors[J]. Nature, 2013, 498: 443
[11] Kang L X, Hu Y, Zhong H, et al.Large-area growth of ultra-high-density single-walled carbon nanotube arrays on sapphire surface[J]. Nano Res., 2015, 8: 3694
[12] Zhang F, Hou P X, Liu C, et al.Growth of semiconducting single-wall carbon nanotubes with a narrow band-gap distribution[J]. Nat. Commun., 2016, 7: 11160
[13] Zhao X L, Yang F, Chen J H, et al.Selective growth of chirality-enriched semiconducting carbon nanotubes by using bimetallic catalysts from salt precursors[J]. Nanoscale, 2018, 10: 6922
[14] Wang J T, Jin X, Liu Z B, et al.Growing highly pure semiconducting carbon nanotubes by electrotwisting the helicity[J]. Nat. Catal., 2018, 1: 326
[15] Shulaker M M, Hills G, Patil N, et al.Carbon nanotube computer[J]. Nature, 2013, 501: 526
[16] Qiu C G, Zhang Z Y, Xiao M M, et al.Scaling carbon nanotube complementary transistors to 5-nm gate lengths[J]. Science, 2017, 355: 271
[17] /https://managementjournal24.com/199153/global-carbon-nanotube-market-analysis-report-2018-raymor-timesnano-kumho-petrochemical-and-arkema
[18] /https://ocsial.com/en/news/278
[19] Sun D M, Timmermans M Y, Tian Y, et al.Flexible high-performance carbon nanotube integrated circuits[J]. Nat. Nanotechnol., 2011, 6: 156
[20] /https://canatu.com
[21] Wang B W, Jiang S, Zhu Q B, et al.Continuous fabrication of meter-scale single-wall carbon nanotube films and their use in flexible and transparent integrated circuits[J]. Adv. Mater., 2018, 30: 1802057
[22] Zhang Q, Huang J Q, Qian W Z, et al.The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage[J]. Small, 2013, 9: 1237
[23] Iijima S, Ichihashi T.Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363: 603
[24] Bethune D S, Kiang C H, De Vries M S, et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls[J]. Nature, 1993, 363: 605
[25] Dai H J, Rinzler A G, Nikolaev P, et al.Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide[J]. Chem. Phys. Lett., 1996, 260: 471
[26] Cheng H M, Li F, Su G, et al.Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J]. Appl. Phys. Lett., 1998, 72: 3282
[27] Bachilo S M, Balzano L, Herrera J E, et al.Narrow (n,m)-distribution of single-walled carbon nanotubes grown using a solid supported catalyst[J]. J. Am. Chem. Soc., 2003, 125: 11186
[28] Hata K, Futaba D N, Mizuno K, et al.Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J]. Science, 2004, 306: 1362
[29] Yang F, Wang X, Zhang D Q, et al.Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts[J]. Nature, 2014, 510: 522
[30] Zhang S C, Kang L X, Wang X, et al.Arrays of horizontal carbon nanotubes of controlled chirality grown using designed catalysts[J]. Nature, 2017, 543: 234
[31] Zhang L L, He M S, Hansen T W, et al.Growth termination and multiple nucleation of single-wall carbon nanotubes evidenced by in situ transmission electron microscopy[J]. ACS Nano., 2017, 11: 4483
[32] Tang D M, Liu C, Yu W J, et al.Structural changes in Iron oxide and gold catalysts during nucleation of carbon nanotubes studied by in situ transmission electron microscopy[J]. ACS Nano., 2014, 8: 292
[33] Liu B L, Tang D M, Sun C H, et al.Importance of oxygen in the metal-free catalytic growth of single-walled carbon nanotubes from SiOx by a vapor-solid-solid mechanism[J]. J. Am. Chem. Soc., 2010, 133: 197
[34] Lin M, Tan J P Y, Boothroyd C, et al. Direct observation of single-walled carbon nanotube growth at the atomistic scale[J]. Nano Lett., 2006, 6: 449
[35] Hammer B, Morikawa Y, N?rskov J K.CO chemisorption at metal surfaces and overlayers[J]. Phys. Rev. Lett., 1996, 76: 2141
[36] Robertson J.Heterogeneous catalysis model of growth mechanisms of carbon nanotubes, graphene and silicon nanowires[J]. J. Mater. Chem., 2012, 22: 19858
[37] Guillermet A F, H?glund J, Grimvall G.Cohesive properties of 4d-transition-metal carbides and nitrides in the NaCl-type structure[J]. Phys. Rev., 1992, 45B: 11557
[38] Guillermet A F, H?glund J, Grimvall G.Cohesive properties and electronic structure of 5d-transition-metal carbides and nitrides in the NaCl structure[J]. Phys. Rev., 1993, 48B: 11673
[39] Meschel S V, Kleppa O J.Thermochemistry of alloys of transition metals and lanthanide metals with some IIIB and IVB elements in the periodic table[J]. J. Alloys Compd., 2001, 321: 183
[40] Ding F, Larsson P, Larsson J A, et al.The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes[J]. Nano Lett., 2008, 8: 463
[41] Ribas M A, Ding F, Balbuena P B, et al.Nanotube nucleation versus carbon-catalyst adhesion-probed by molecular dynamics simulations[J]. J. Chem. Phys., 2009, 131: 224501
[42] Wirth C T, Hofmann S, Robertson J.State of the catalyst during carbon nanotube growth[J]. Diamond Relat. Mater., 2009, 18: 940
[43] Penev E S, Ding F, Yakobson B I.Mechanisms and theoretical simulations of the catalytic growth of nanocarbons[J]. MRS Bull., 2017, 42: 794
[44] Wang X, He M S, Ding F.Chirality-controlled synthesis of single-walled carbon nanotubes—From mechanistic studies toward experimental realization[J]. Mater. Today. 2018, doi: 10.1016/j.mattod.2018.06.001
[45] Haruta M.Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications[J]. Gold Bull., 2004, 37: 27
[46] Lang S M, Bernhardt T M, Barnett R N, et al.Size-dependent binding energies of methane to small gold clusters[J]. ChemPhysChem. 2010, 11: 1570
[47] Lang S M, Bernhardt T M, Chernyy V, et al.Selective C-H bond cleavage in methane by small gold clusters[J]. Angew. Chem. Int. Ed., 2017, 56: 13406
[48] Takagi D, Homma Y, Hibino H, et al.Single-walled carbon nanotube growth from highly activated metal nanoparticles[J]. Nano Lett., 2006, 6: 2642
[49] Bhaviripudi S, Mile E, Steiner S A, et al.CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts[J]. J. Am. Chem. Soc., 2007, 129: 1516
[50] Homma Y, Liu H P, Takagi D, et al.Single-walled carbon nanotube growth with non-iron-group "catalysts" by chemical vapor deposition[J]. Nano Res., 2009, 2: 793
[51] Ghorannevis Z, Kato T, Kaneko T, et al.Narrow-chirality distributed single-walled carbon nanotube growth from nonmagnetic catalyst[J]. J. Am. Chem. Soc., 2010, 132: 9570
[52] Homma Y.Gold nanoparticles as the catalyst of single-walled carbon nanotube synthesis[J]. Catalysts, 2014, 4: 38
[53] Magnin Y, Amara H, Ducastelle F, et al., Entropy driven stability of chiral single-walled carbon nanotubes, ArXiv: 1803.07350
[54] Xu Z W, Qiu L, Ding F.The kinetics of chirality assignment in catalytic single-walled carbon nanotube growth and the routes towards selective growth[J]. Chem. Sci., 2018, 9: 3056
[55] Zhao Q C, Xu Z W, Hu Y, et al.Chemical vapor deposition synthesis of near-zigzag single-walled carbon nanotubes with stable tube-catalyst interface[J]. Sci. Adv., 2016, 2: e1501729
[56] Buffat P, Borel J P.Size effect on the melting temperature of gold particles[J]. Phys. Rev., 1976, 13A: 2287
[57] Couchman P R, Jesser W A.Thermodynamic theory of size dependence of melting temperature in metals[J]. Nature, 1977, 269: 481
[58] Ding F, Bolton K, Rosén A.Iron-carbide cluster thermal dynamics for catalyzed carbon nanotube growth[J]. J. Vac. Sci. Technol., 2004, 22A: 1471
[59] Lin P A, Gomez-Ballesteros J L, Burgos J C, et al. Direct evidence of atomic-scale structural fluctuations in catalyst nanoparticles[J]. J. Catal., 2017, 349: 149
[60] Diarra M, Zappelli A, Amara H, et al.Importance of carbon solubility and wetting properties of nickel nanoparticles for single wall nanotube growth[J]. Phys. Rev. Lett., 2012, 109: 185501
[61] Yazyev O V, Pasquarello A.Effect of metal elements in catalytic growth of carbon nanotubes[J]. Phys. Rev. Lett., 2008, 100: 156102
[62] Li P C.Preparation of single-crystal graphite from melts[J]. Nature, 1961, 192: 864
[63] Wang M S, Cheng Y, Zhao L, et al.Graphene ingestion and regrowth on "carbon-starved" metal electrodes[J]. ACS Nano., 2017, 11: 10575
[64] Magnin Y, Zappelli A, Amara H, et al.Size dependent phase diagrams of nickel-carbon nanoparticles[J]. Phys. Rev. Lett., 2015, 115: 205502
[65] Seah C M, Chai S P, Mohamed A R.Mechanisms of graphene growth by chemical vapour deposition on transition metals[J]. Carbon, 2014, 70: 1
[66] Zhang Y, Zhang L Y, Zhou C W.Review of chemical vapor deposition of graphene and related applications[J]. Acc. Chem. Res., 2013, 46: 2329
[67] Mu?oz R, Gómez-Aleixandre C.Review of CVD synthesis of graphene[J]. Chem. Vap. Deposit., 2013, 19: 297
[68] DePoorter G L, Wallace T C. Diffusion in binary carbides[J]. Adv. High Temp. Chem., 1970, 4: 107
[69] Aleksandrov L N, Shchelkonogov V Y.The diffusion of carbon into tungsten and molybdenum at low carbon concentrations[J]. Sov. Powder. Metall. Met. Ceram., 1964, 3: 288
[70] Ku?era J, Stránsky K.Diffusion in iron, iron solid solutions and steels[J]. Mater. Sci. Eng., 1982, 52: 1
[71] Yokoyama H, Numakura H, Koiwa M.The solubility and diffusion of carbon in palladium[J]. Acta Mater., 1998, 46: 2823
[72] McLellan R B, Chraska P. Thermodynamics of iron-carbon solid solutions[J]. Mater. Sci. Eng., 1971, 7: 305
[73] Sharma R, Chee S W, Herzing A, et al.Evaluation of the role of Au in improving catalytic activity of Ni nanoparticles for the formation of one-dimensional carbon nanostructures[J]. Nano Lett., 2011, 11: 2464
[74] Baker R T K, Barber M A, Harris P S, et al. Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene[J]. J. Catal., 1972, 26: 51
[75] Goldberg D, Belton G R.The diffusion of carbon in iron-carbon alloys at 1560 ℃[J]. Metall. Trans., 1974, 5: 1643
[76] Hofmann S, Csányi G, Ferrari A C, et al.Surface diffusion: The low activation energy path for nanotube growth[J]. Phys. Rev. Lett., 2005, 95: 036101
[77] http://www.crct.polymtl.ca/FACT/documentation/#opennewwindow
[78] Zhou W W, Han Z Y, Wang J Y, et al.Copper catalyzing growth of single-walled carbon nanotubes on substrates[J]. Nano Lett., 2006, 6: 2987
[79] Kiribayashi H, Ogawa S, Kozawa A, et al. Low-temperature growth of single-walled carbon nanotube using Al2O3 /Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum [J]. Jpn. J. Appl. Phys., 2016, 55: 06GF04
[80] Maruyama T, Kondo H, Ghosh R, et al.Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum[J]. Carbon, 2016, 96: 6
[81] Maruyama T, Kozawa A, Saida T, et al.Low temperature growth of single-walled carbon nanotubes from Rh catalysts[J]. Carbon,2017, 116: 128
[82] Rümmeli M H, Sch?ffel F, Kramberger C, et al.Oxide-driven carbon nanotube growth in supported catalyst CVD[J]. J. Am. Chem. Soc., 2007, 129: 15772
[83] Huang S M, Cai Q R, Chen J Y, et al.Metal-catalyst-free growth of single-walled carbon nanotubes on substrates[J]. J. Am. Chem. Soc., 2009, 131: 2094
[84] Liu B L, Ren W C, Gao L B, et al.Metal-catalyst-free growth of single-walled carbon nanotubes[J]. J. Am. Chem. Soc., 2009, 131: 2082
[85] Gao F L, Zhang L J, Huang S M.Zinc oxide catalyzed growth of single-walled carbon nanotubes[J]. Appl. Surf. Sci., 2010, 256: 2323
[86] Liu H P, Takagi D, Chiashi S, et al.Investigation of catalytic properties of Al2O3 particles in the growth of single-walled carbon nanotubes[J]. J. Nanosci. Nanotechnol., 2010, 10: 4068
[87] Liu H P, Takagi D, Chiashi S, et al.The growth of single-walled carbon nanotubes on a silica substrate without using a metal catalyst[J]. Carbon, 2010, 48: 114
[88] Qian Y, Huang B, Gao F L, et al.Preferential growth of semiconducting single-walled carbon nanotubes on substrate by europium oxide[J]. Nanoscale Res. Lett., 2010, 5: 1578
[89] Cheng M, Wang B W, Hou P X, et al.Selective growth of semiconducting single-wall carbon nanotubes using SiC as a catalyst[J]. Carbon, 2018, 135: 195
[90] http://periodictable.com/Properties/A/ThermalConductivity.st.log.wt.gif
[91] Shatynski S R.The thermochemistry of transition metal carbides[J]. Oxid. Met., 1979, 13: 105
[92] Madey T E, Yates J T, Stern R C.Isotopic mixing in CO chemisorbed on tungsten. A kinetic study[J]. J. Chem. Phys., 1965, 42: 1372
[93] Wert C A.Diffusion coefficient of C in α-ron[J]. Phys. Rev., 1950, 79: 601
[94] Fuks D, Mundim K C, Malbouisson L A C, et al. Carbon in copper and silver: Diffusion and mechanical properties[J]. J. Mol. Struct.(Theochem), 2001, 539: 199
[95] Chen Y B, Zhang Y Y, Hu Y, et al.State of the art of single-walled carbon nanotube synthesis on surfaces[J]. Adv. Mater., 2014, 26: 5898
[96] Tessonnier J P, Su D S.Recent progress on the growth mechanism of carbon nanotubes: A review[J]. ChemSusChem., 2011, 4: 824
[97] Hofmann S, Sharma R, Ducati C, et al.In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation[J]. Nano Lett., 2007, 7: 602
[98] Yoshida H, Takeda S, Uchiyama T, et al.Atomic-scale in-situ observation of carbon nanotube growth from solid state Iron carbide nanoparticles[J]. Nano Lett., 2008, 8: 2082
[99] Wirth C T, Bayer B C, Gamalski A D, et al.The phase of Iron catalyst nanoparticles during carbon nanotube growth[J]. Chem. Mater., 2012, 24: 4633
[100] Yasuda S, Futaba D N, Yamada T, et al.Improved and large area single-walled carbon nanotube forest growth by controlling the gas flow direction[J]. ACS Nano., 2009, 3: 4164
[101] Kocabas C, Kang S J, Ozel T, et al.Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors[J]. J. Phys. Chem., 2007, 111C: 17879
[102] Hu Y, Kang L X, Zhao Q C, et al.Growth of high-density horizontally aligned SWNT arrays using trojan catalysts[J]. Nat. Commun., 2015, 6: 6099
[103] Jiang S, Hou P X, Chen M L, et al. Ultrahigh-performance transparent conductive films of carbon-welded isolated single-wall carbon nanotubes [J]. Sci. Adv., 2018, 4: eaap9264
[104] He M S, Jiang H, Liu B L, et al.Chiral-selective growth of single-walled carbon nanotubes on lattice-mismatched epitaxial cobalt nanoparticles[J]. Sci Rep., 2013, 3: 1460
[105] He M S, Wang X, Zhang L L, et al.Anchoring effect of Ni2+ in stabilizing reduced metallic particles for growing single-walled carbon nanotubes[J]. Carbon, 2018, 128: 249
[106] He M S, Fedotov P V, Chernov A, et al.Chiral-selective growth of single-walled carbon nanotubes on Fe-based catalysts using CO as carbon source[J]. Carbon, 2016, 108: 521
[107] Harutyunyan A R, Chen G G, Paronyan T M, et al.Preferential growth of single-walled carbon nanotubes with metallic conductivity[J]. Science, 2009, 326: 116
[108] Yu B, Liu C, Hou P X, et al.Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition[J]. J. Am. Chem. Soc., 2011, 133: 5232
[109] Li W S, Hou P X, Liu C, et al.High-quality, highly concentrated semiconducting single-wall carbon nanotubes for use in field effect transistors and biosensors[J]. ACS Nano., 2013, 7: 6831
[110] Hou P X, Li W S, Zhao S Y, et al.Preparation of metallic single-wall carbon nanotubes by selective etching[J]. ACS Nano., 2014, 8: 7156
[111] Deck C P, Vecchio K.Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams[J]. Carbon, 2006, 44: 267
[112] Karakaya I, Thompson W T.The Ag-C (silver-carbon) system[J]. Bull. Alloy Phase Diagr., 1988, 9: 226
[113] Okamoto H, Massalski T B.The Au-C (gold-carbon) system[J]. Bull. Alloy Phase Diagr., 1984, 5: 378
[114] Raty J Y, Gygi F, Galli G.Growth of carbon nanotubes on metal nanoparticles: A microscopic mechanism from Ab initio molecular dynamics simulations[J]. Phys. Rev. Lett., 2005, 95: 096103
[115] Takagi D, Kobayashi Y, Hibino H, et al.Mechanism of gold-catalyzed carbon material growth[J]. Nano Lett., 2008, 8: 832
[116] Ding L, Yuan D N, Liu J.Growth of high-density parallel arrays of long single-walled carbon nanotubes on quartz substrates[J]. J. Am. Chem. Soc., 2008, 130: 5428
[117] Cui R L, Zhang Y, Wang J Y, et al.Comparison between copper and iron as catalyst for chemical vapor deposition of horizontally aligned ultralong single-walled carbon nanotubes on silicon substrates[J]. J. Phys. Chem., 2010, 114C: 15547
[118] Zhao X L, Liu Y, Cui R L, et al.Nucleation of copper nanoparticles on quartz as catalysts to grow single-walled carbon nanotube arrays[J]. Carbon, 2016, 110: 390
[119] Ahmed S, Aitani A, Rahman F, et al.Decomposition of hydrocarbons to hydrogen and carbon[J]. Appl. Catal., 2009, 359A: 1
[120] Ogihara H, Takenaka S, Yamanaka I, et al.Formation of highly concentrated hydrogen through methane decomposition over Pd-based alloy catalysts[J]. J. Catal., 2006, 238: 353
[121] Maruyama T, Mizutani Y, Naritsuka S, et al.Single-walled carbon nanotube growth in high vacuum using Pt catalyst in alcohol gas source method[J]. Mater. Express, 2011, 1: 267
[122] Murakami T, Mitikami K, Ishigaki S, et al.Catalytic mechanism of a Fe-Co bimetallic system for efficient growth of single-walled carbon nanotubes on Si/SiO2 substrates[J]. J. Appl. Phys., 2006, 100: 094303
[123] Chiang W H, Sankaran R M.Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1-x nanoparticles[J]. Nat. Mater., 2009, 8: 882
[124] Doustan F, Pasha M A.Growth of carbon nanotubes over Fe-Co and Ni-Co catalysts supported on different phases of TiO2 substrate by thermal CVD[J]. Fullerence Nanotubes Carbon Nanostruct., 2015, 24: 25
[125] He M S, Chernov A I, Obraztsova E D, et al.Synergistic effects in FeCu bimetallic catalyst for low temperature growth of single-walled carbon nanotubes[J]. Carbon, 2013, 52: 590
[126] Cui K H, Kumamoto A, Xiang R, et al.Synthesis of subnanometer-diameter vertically aligned single-walled carbon nanotubes with copper-anchored cobalt catalysts[J]. Nanoscale, 2016, 8: 1608
[127] Li X L, Tu X M, Zaric S, et al.Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection[J]. J. Am. Chem. Soc., 2007, 129: 15770
[128] He M S, Jin H, Zhang L L, et al.Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes[J]. Carbon, 2016, 110: 243
[129] Liu B L, Ren W C, Li S S, et al.High temperature selective growth of single-walled carbon nanotubes with a narrow chirality distribution from a CoPt bimetallic catalyst[J]. Chem. Commun., 2012, 48: 2409
[130] Tang L, Li T T, Li C W, et al.CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes[J]. Nanoscale, 2015, 7: 19699
[131] Thurakitseree T, Einarsson E, Xiang R, et al.Diameter controlled chemical vapor deposition synthesis of single-walled carbon nanotubes[J]. J. Nanosci. Nanotechnol., 2012, 12: 370
[132] Kang L X, Zhang S C, Li Q W, et al.Growth of horizontal semiconducting SWNT arrays with density higher than 100 tubes/μm using ethanol/methane chemical vapor deposition[J]. J. Am. Chem. Soc., 2016, 138: 6727
[133] Wang X S, Li Q Q, Xie J, et al.Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates[J]. Nano Lett., 2009, 9: 3137
[134] Harutyunyan A R, Pradhan B K, Kim U J, et al.CVD synthesis of single wall carbon nanotubes under "soft" conditions[J]. Nano Lett., 2002, 2: 525
[135] Shajahan M, Mo Y H, Kibria A K M F, et al. High growth of SWNTs and MWNTs from C2H2 decomposition over Co-Mo/MgO catalysts[J]. Carbon, 2004, 42: 2245
[136] Lolli G, Zhang L, Balzano L, et al.Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts[J]. J. Phys. Chem., 2006, 110B: 2108
[137] Zoican Loebick C, Derrouiche S, Fang F, et al.Effect of chromium addition to the Co-MCM-41 catalyst in the synthesis of single wall carbon nanotubes[J]. Appl. Catal., 2009, 368: 40
[138] Loebick C Z, Derrouiche S, Marinkovic N, et al.Effect of manganese addition to the Co-MCM-41 catalyst in the selective synthesis of single wall carbon nanotubes[J]. J. Phys. Chem., 2009, 113C: 21611
[139] Yang F, Wang X, Zhang D Q, et al.Growing zigzag (16,0) carbon nanotubes with structure-defined catalysts[J]. J. Am. Chem. Soc., 2015, 137: 8688
[140] Yang F, Wang X, Si J, et al.Water-assisted preparation of high-purity semiconducting (14, 4) carbon nanotubes[J]. ACS nano., 2016, 11: 186
[141] Li M H, Yang F, Ding L, et al.Diameter-specific growth of single-walled carbon nanotubes using tungsten supported nickel catalysts[J]. Carbon, 2017, 118: 485
[142] Kathyayini H, Nagaraju N, Fonseca A, et al.Catalytic activity of Fe, Co and Fe/Co supported on Ca and Mg oxides, hydroxides and carbonates in the synthesis of carbon nanotubes[J]. J. Mol. Catal., 2004, 223A: 129
[143] Dal Santo V, Gallo A, Naldoni A, et al.Bimetallic heterogeneous catalysts for hydrogen production[J]. Catal. Today, 2012, 197: 190
[144] Jeong H, Kang M.Hydrogen production from butane steam reforming over Ni/Ag loaded MgAl2O4 catalyst[J]. Appl. Catal., 2010, 95B: 446
[145] Dutta D, Sankaran R M, Bhethanabotla V R.Predicting the chiral enrichment of metallic SWCNTs on Ni-Cu bimetallic surfaces[J]. Chem. Mater., 2014, 26: 4943
[146] Yang F, Wang X, Li M H, et al.Templated synthesis of single-walled carbon nanotubes with specific structure[J]. Acc. Chem. Res., 2016, 49: 606
[147] Penev E S, Bets K V, Gupta N, et al.Transient kinetic selectivity in nanotubes growth on solid Co-W catalyst[J]. Nano Lett., 2018, 18: 5288
[148] Liu H P, Takagi D, Ohno H, et al.Growth of single-walled carbon nanotubes from ceramic particles by alcohol chemical vapor deposition[J]. Appl. Phys. Express, 2008, 1: 014001
[149] Liu B L, Ren W C, Liu C, et al.Growth velocity and direct length-sorted growth of short single-walled carbon nanotubes by a metal-catalyst-free chemical vapor deposition process[J]. ACS nano., 2009, 3: 3421
[150] Zhang L L, Sun D M, Hou P X, et al.Selective growth of metal-free metallic and semiconducting single-wall carbon nanotubes[J]. Adv. Mater., 2017, 29: 1605719
[151] Zhang S C, Tong L M, Hu Y, et al.Diameter-specific growth of semiconducting SWNT arrays using uniform Mo2C solid catalyst[J]. J. Am. Chem. Soc., 2015, 137: 8904
[152] Kang L X, Hu Y, Liu L L, et al.Growth of close-packed semiconducting single-walled carbon nanotube arrays using oxygen-deficient TiO2 nanoparticles as catalysts[J]. Nano Lett., 2015, 15: 403
[153] Artyukhov V I, Penev E S, Yakobson B I.Why nanotubes grow chiral[J]. Nat. Commun., 2014, 5: 4892
[154] Ding F, Harutyunyan A R, Yakobson B I.Dislocation theory of chirality-controlled nanotube growth[J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 2506
[155] Zhang L, Tan Y Q, Resasco D E.Controlling the growth of vertically oriented single-walled carbon nanotubes by varying the density of CoMo catalyst particles[J]. Chem. Phys. Lett., 2006, 422: 198
[156] Li P, Zhang X, Liu J.Aligned single-walled carbon nanotube arrays from rhodium catalysts with unexpected diameter uniformity independent of the catalyst size and growth temperature[J]. Chem. Mater., 2016, 28: 870
[157] Hong B H, Lee J Y, Beetz T, et al.Quasi-continuous growth of ultralong carbon nanotube arrays[J]. J. Am. Chem. Soc., 2005, 127: 15336
[158] Yao Y G, Liu R, Zhang J, et al.Raman spectral measuring of the growth rate of individual single-walled carbon nanotubes[J]. J. Phys. Chem., 2007, 111C: 8407
[159] Kozawa A, Kiribayashi H, Ogawa S, et al.Single-walled carbon nanotube growth on SiO2 /Si using Rh catalysts by alcohol gas source chemical vapor deposition[J]. Diamond Relat. Mater., 2016, 63: 159
[160] Ding L, Tselev A, Wang J Y, et al.Selective growth of well-aligned semiconducting single-walled carbon nanotubes[J]. Nano Lett., 2009, 9: 800
[161] Bouanis F Z, Florea I, Bouanis M, et al.Diameter controlled growth of SWCNTs using Ru as catalyst precursors coupled with atomic hydrogen treatment[J]. Chem. Eng. J., 2018, 332: 92
[162] Hong G, Zhang B, Peng B H, et al.Direct growth of semiconducting single-walled carbon nanotube array[J]. J. Am. Chem. Soc., 2009, 131: 14642
[163] Li J H, Ke C T, Liu K H, et al.Importance of diameter control on selective synthesis of semiconducting single-walled carbon nanotubes[J]. ACS Nano., 2014, 8: 8564
[164] Sabol G P, Stickler R.Microstructure of nickel-based superalloys[J]. Phys. Stat. Sol., 1969, 35: 11
[1] FENG Kai, GUO Yanbing, FENG Yulei, YAO Chengwu, ZHU Yanyan, ZHANG Qunli, LI Zhuguo. Microstructure Controlling and Properties of Laser Cladded High Strength and High Toughness Fe-Based Coatings[J]. 金属学报, 2022, 58(4): 513-528.
[2] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[3] LIU Chenxi, MAO Chunliang, CUI Lei, ZHOU Xiaosheng, YU Liming, LIU Yongchang. Recent Progress in Microstructural Control and Solid-State Welding of Reduced Activation Ferritic/Martensitic Steels[J]. 金属学报, 2021, 57(11): 1521-1538.
[4] Xiancui LIU, Ye PAN, Zhijiao TANG, Weiqiao HE, Tao LU. Microstructure Control and High Temperature Properties of Al-Mn-Based Alloys[J]. 金属学报, 2017, 53(11): 1487-1494.
[5] Yuefeng GU,Chuanyong CUI,Yong YUAN,Zhihong ZHONG. RESEARCH PROGRESS IN A HIGH PERFORMANCE CAST & WROUGHT SUPERALLOY FOR TURBINE DISC APPLICATIONS[J]. 金属学报, 2015, 51(10): 1191-1206.
[6] LI Shuangming, GENG Zhenbo, HU Rui, LIU Yi, LUO Ximing. EFFECT OF GROWTH ANGLE AND SOLIDIFICATION RATE ON THE FLOATING ZONE STABILITY FOR PROCESSING OF HIGH-TEMPERATURE PURE METALS[J]. 金属学报, 2015, 51(1): 114-120.
[7] YANG Haopeng, WU Xiaochun, QIN Fang, YANG Longjiao. STUDY ON GROWTH MECHANISM OF SALT BATH VANADIZING COATING BY TD PROCESS ON SDC99 STEEL[J]. 金属学报, 2013, 49(2): 146-152.
[8] WANG Chuanqi, LIU Hongxi, ZHOU Rong, JIANG Yehua, ZHANG Xiaowei. CHARACTERISTIC BEHAVIORS OF PARTICLE PHASES IN NiCrBSi-TiC COMPOSITE COATING BY LASER CLADDING ASSISTED BY MECHANICAL VIBRATION[J]. 金属学报, 2013, 49(2): 221-228.
[9] SONG Peng LU Jiansheng ZHANG Defeng LU Jianguo LI Dejiang. EFFECT OF La AND Hf DOPANT ON THE HIGH TEMPERATURE OXIDATION OF CoNiCrAl ALLOYS[J]. 金属学报, 2011, 47(6): 655-662.
[10] WenBin Xue. EFFECT OF REINFORCEMENT PARTICLE ON GROWTH OF MICROARC OXIDATION FILM ON ALUMINUM MATRIX COMPOSITE[J]. 金属学报, 2006, 42(4): 350-354 .
[11] PEI Zhiliang; ZHANG Xiaobo; WANG Tiegang; GONG Jun; SUN Chao; WEN Lishi. Preparation and Properties Of ZnO:Al (ZAO) Thin Films Eposited by DC Reactive Magnetron Sputtering[J]. 金属学报, 2005, 41(1): 84-.
[12] WANG Daifeng; LI Geyang; LI Pengxing; WU Renjie(State Key Laboratory for MMCs; Shanghai Jiaotong University; Shanghai 200030)(Manuscript received 1995-04-14; in revised form 1995-09-14). CREEP FRACTURE PROCESS COUPLED WITH CAVITATION IN SiC_p-Al COMPOSITE[J]. 金属学报, 1996, 32(4): 433-437.
[13] YANG Liu; ZHU Degui; ZHANG Jun; CHEN Jian (Southwestern Jiaotong University; Chengdu). IN SITU OBSERVATION OF GROWTH OF BAINITE IN Fe-Ni ALLOY[J]. 金属学报, 1994, 30(8): 344-347.
[14] FANG Hongsheng;WANG Jiajun (Tsinghua University; Beijing)(Manuscript received 25 March; 1994). AN OVERVIEW OF RECENT PROCESSES AND ARGUMENTS ON BAINITIC TRANSFORMATION THEORY[J]. 金属学报, 1994, 30(11): 481-490.
No Suggested Reading articles found!