Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1567-1585    DOI: 10.11900/0412.1961.2018.00356
Materials and Processes Current Issue | Archive | Adv Search |
Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear
Ke YANG1, Mengchao U1,2, Jialong AN3, Wei NG1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 School of Materials Science and Engineering, University of Science and Technology of China, Shenyang 110016, China
3 School of Metallurgy, Northeastern University, Shenyang 110819, China
Cite this article: 

Ke YANG, Mengchao U, Jialong AN, Wei NG. Research and Development of Maraging Stainless Steel Used for New Generation Landing Gear. Acta Metall Sin, 2018, 54(11): 1567-1585.

Download:  HTML  PDF(11433KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Properties of landing gear are closely related to the service safety of aircraft. Thus, it is essential to improve the comprehensive properties of the material used for landing gear. This article briefly introduces the application status and existing problems of currently used landing gear materials, and then proposes future developing directions of landing gear materials. Finally, a new maraging stainless steel with high strength, high toughness and good corrosion resistance, which can be a promising steel for the new generation landing gear material, is introduced.

Key words:  landing gear      maraging stainless steel      strength and toughness      corrosion resistance     
Received:  30 July 2018     
ZTFLH:  TG142.71  
Fund: Supported by National Natural Science Foundation of China (No.51201160), National Natural Science Foundation of China Research Fund for International Young Scientists (No.51750110515), Youth Innovation Promotion Association of Chinese Academy of Sciences (No.2017233) and Innovation Project of Institute of Metal Research, Chinese Academy of Sciences (No.2015-ZD04)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00356     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1567

Material Mass fraction of element / % Ultimate tensile strength / MPa Fracture toughness MPam1/2
C Cr Ni Mo Co Others
300M[1,2] 0.39 0.91 1.82 0.42 - Si 1.61, V 0.07, Mn 0.69 1975 84
AerMet100[3,4,5] 0.24 2.99 11.20 1.18 13.40 Si 0.03, Mn<0.01 1965 115
Ferrium S53[8,9] 0.21 10.00 5.50 2.00 14.00 W 1.00,V 0.30 1986 71
S280[10,11] 0.18 12.00 4.00 2.00 14.00 W 1.00 1930 95
Table 1  Chemical compositions and mechanical properties of high strength steels for landing gear application[1~5,8~11]
Material Mass fraction of element / % Ultimate tensile Corrosion
C Cr Ni Mo Co Others strength / MPa resistance
Custom 475[12] 0.01 10.8 8.1 5.1 8.5 Al 1.2 2006 Poor
Custom 465[13] 0.0046 10.7 10.9 0.86 - Ti 1.4, Al 0.04 1779 Normal
1RK91[14] 0.01 12.2 8.99 4.02 - Ti 0.87, Cu 1.95, Al 0.33 1700 Normal
PH13-8Mo[15] 0.03 12.43 8.39 2.15 - Al 0.97, Ti 0.067 1551 Good
17-4 PH[16] 0.023 15.7 4.89 0.21 - Cu 3.65 1399 Good
15-5 PH[17] 0.041 14.8 4.87 - 0.08 Cu 3.10, Nb 0.30 1325 Good
Table 2  Chemical compositions, ultimate tensile strengths and corrosion resistances of some typical maraging stainless steels[12,13,14,15,16,17]
Steel C Cr Ni Co Mo Ti Al P S Fe
0Co 0.002 12.31 5.42 0.02 5.08 0.41 0.05 0.003 0.004 Bal.
5Co 0.003 12.06 5.13 5.05 5.13 0.38 0.05 0.005 0.003 Bal.
13Co 0.005 12.33 4.55 13.10 5.59 0.41 0.09 0.004 0.002 Bal.
Table 3  Chemical compositions of maraging stainless steels with Co contents of 0, 5% and 13%[30]
(mass fraction / %)
Fig.1  Morphologies of samples before (a) and after (b) immersion in 3.5%NaCl solution for 480 h (A1, B1 and C1 are morphologies of 0Co, 5Co and 13Co samples after solution treatment; A2, B2 and C2 are morphologies of 0Co, 5Co and 13Co samples after ageing treatment)
Fig.2  3DAP chromium atoms mapping of three alloy specimens aged at 773 K for different times (All the analyzed volumes are with the dimensions of 30×30×60 nm3)[30]
(a, c, e) specimens after cryogenic treatment in 0Co, 5Co and 13Co alloys
(b, d) specimens after ageing for 100 h in 0Co, 5Co alloys
(f~h) specimens after ageing for 0.5 h, 3 h and 100 h respectively in 13Co alloy
Fig.3  Variations trends of corrosion current density (a) and spinodal decomposition amplitude (b) as a function of ageing time for three alloy specimens aged at 500 ℃[30]
Fig.4  Atomic positions of Cr, Co and Fe in model A (a), model B (b), model C (c) and model D (d) (Crx, x=1~9 denotes Cr atom will replace Fe atom at the numbered sites. Models A and C are used to evaluate the configuration with remote Cr-Cr positions. Models B and D are used to evaluate the first nearest neighbors of Cr-Cr interactions)[30]
Fig.5  The cluster-formation energy (ΔE, green lines) and the difference of averaged magnetic moments of Fe between two Cr distributions (Δμ?Fe, red lines) as a function of Cr concentration with and without Co addition (ΔE denotes the cluster formation energy, μB denotes Bohr magneton)[30]
Steel C Cr Ni Co Mo Ti Fe
7Co 0.004 12.35 5.28 7.22 3.53 0.46 Bal.
10Co 0.004 12.00 5.35 10.10 3.64 0.41 Bal.
13Co 0.005 12.10 5.40 12.80 3.66 0.43 Bal.
Table 4  Chemical compositions of maraging stainless steels with Co contents of 7%, 10% and 13%
(mass fraction / %)
Fig.6  Microstructures (a~c) and prior austenite grain sizes (d~f) of 7Co (a, d), 10Co (b, e) and 13Co (c, f) maraging stainless steels
Fig.7  Evolutions of hardness during ageing at 520 ℃ for different Co-alloyed maraging stainless steels
Fig.8  Yield strengths of different Co-alloyed maraging stainless steels after solution and peak ageing treatment
Fig.9  Bright-field TEM images showing precipitates in 7Co (a), 10Co (b) and 13Co (c) maraging stainless steels after peak ageing, and selected area electron diffraction patterns of R phase (d) and Ni3Ti phase and matrix (M and P denoting matrix and precipitate, respectively) (e)
Fig.10  3DAP atoms mapping of 7Co maraging stainless steel under peak ageing condition (All the analyzed volumes were with dimension of 50×50×130 nm3)
Precipitate Steel rmin / nm rmax / nm Nv fp / % rp / nm
Ni3Ti 7Co 1.83 12.68 7.56 4.69 7.15
10Co 1.15 9.52 9.81 4.81 6.33
13Co 1.28 7.55 17.6 4.78 4.83
R 7Co 7.05 22.38 1.02 4.98 12.52
10Co 6.42 20.72 1.18 5.48 12.14
13Co 6.53 18.72 1.37 5.31 11.09
Table 5  Statistic analyses of precipitate distribution characteristics in different Co-alloyed steels
Fig.11  Schematic showing precipitation mechanism of Ni3Ti and Mo-rich phases in the maraging stainless steel[43] (CT denotes cryogenic treatment, Mo-rich phase corresponds to R phase in this study)
Fig.12  3DAP reconstructions characterizing Ni3Ti distributions in 7Co (a), 10Co (b) and 13Co (c) maraging stainless steels after ageing at 520 ℃ for 1 h (Ni3Ti is outlined by 35%(Ni+Ti) isoconcentration surface (green), and matrix is outlined by Fe atoms (pink))
Fig.13  3DAP atoms mapping of three steels (All the analyzed volumes are with the dimension of 30×30×80 nm3)[44]
( a~c) atoms mapping in 7Co steel (d~f) atoms mapping in 10Co steel
(g~i) atoms mapping in 13Co steel
Fig.14  Ni-Ti cluster size distribution in 7Co (a), 10Co (b) and 13Co (c) maraging stainless steels after ageing at 520 ℃ for 0.5 h (The parameters for cluster analysis: maximum separation distance dmax=0.5 nm, minimum number of atoms Nmin=100, erosion distance dero=0.1 nm, surround distance L=0.1 nm. Cluster density is defined as: the number of cluster dividing the volume of analyzed body)[44]
Fig.15  Three-dimensional reconstruction of the atom positions Ni, Ti, Fe (a) and Ni, Ti, Co (b) of the selected Ni-Ti cluster inclusive region in 13Co steel, and one-dimensional concentration profile through the arrow marked in Fig.15b (c)[44]
Fig.16  Atomic structures of Fe119Ni8Ti1 (a) and Fe110Co9Ni8Ti1 (b) alloys[44]
Fig.17  Schematic atomic structures of different NiNTi1 clusters and the calculated energies (Black number denoting the energy without Co addition; blue number denoting the energy with Co addition)[44]
( a) denoting the structure of alloy without Ni-Ti cluster
(b, f) denoting two structures of Ni-Ti cluster (Ni2Ti1)
(c, d, g, h) denoting four structures of Ni-Ti cluster (Ni4Ti1)
(e) denoting the structure of Ni-Ti cluster (Ni8Ti1)
Fig.18  Formation energies of Ni-Ti clusters with different atomic structures (The result of Ni2Ti1 is the average of two structures (Ni2Ti1/A和Ni2Ti1/B), and the result of Ni4Ti1 is the average of four structures (Ni4Ti1/A,Ni4Ti1/B,Ni4Ti1/C and Ni4Ti1/D)) [44]
Fig.19  Formation energies (Eform.) of different compounds[44]
Steel C Cr Ni Co Mo Ti O N Fe
Prototype steel <0.01 12.33 4.55 13.10 5.59 0.41 <0.003 <0.003 Bal.
New steel <0.01 12~13 6~8 5~8 2~4 1~2 <0.003 <0.003 Bal.
Table 6  Chemical compositions of the new maraging stainless steel
(mass fraction / %)
Fig.20  Microstructures characterization of the new steel by HRTEM[43]
(a) typical martensitic lath in the specimen after CT (cryogenic treatment) treatment, lath boundary is outlined by red dashed line
(b) dislocation observation in the region taken from the square in Fig.20a
(c) morphology of Ni3Ti and Mo-rich precipitates (R phases) in the steel after peak aging treatment
(d1, d2) high-resolution image of Mo-rich precipitate (R phase) and the corresponding FFT (fast Fourier transform) pattern in the inset
(d3, d4) high-resolution image of Ni3Ti precipitate and the corresponding FFT pattern in the inset
Fig.21  Morphologies of precipitates observed by atom probe tomography (APT) in the new steel under peak ageing condition[43]
(a) 3-D reconstruction of the atomic positions of Fe (pink points), isoconcentration surface for regions containing more than 10%Mo (atomic fraction, red surfaces) and 35%(Ni+Ti) (atomic fraction, green surfaces)
(b) sphere-like Mo-rich (R) phase outlined by 10%Mo isoconcentration surface
(c) rod-like Ni3Ti phase outlined by Ni (green) and Ti (grey) atoms
(d) flake-like Mo-rich (R) phase outlined by 10%Mo isoconcentration surface
(e) sphere-like Ni3Ti phase outlined by Ni (green) and Ti (grey) atoms
Fig.22  Surface morphologies of different maraging stainless steels under peak ageing condition before (a) and after (b) immersion in 3.5%NaCl solution for 144 h (MSS 2 and MSS 1 denote new steel and prototype steel, respectively)[53]
Fig.23  XPS concentration-depth profiles for the passive films formed on the MSS 1 (a), MSS 2 (b) and 15-5 PH (c) after immersion test[53]
Fig.24  Strength-toughness-corrosion resistance profiles of the new steel and commercial maraging stainless steels under peak ageing conditions[43] (Spheres denote the properties of commercial maraging stainless steels and pentacle denotes the properties of the new steel. Data of mechanical properties of commercial maraging stainless steels are taken from references: 15-5 PH[54], 17-4 PH[55], PH 13-8Mo[56], Custom 465[23], Ferrium S53[9]. In this figure, the fracture toughness of all the steels is above 50 MPam1/2, but only S53 and Custom 475 have the same strength level as the new steel. However, the corrosion resistance of these two steels is not as good as the new steel. The results show that the new steel developed by Institute of Metal Research, Chinese Academy of Sciences, has a superior strength-toughness-corrosion synergy)
[1] Tomita Y.Development of fracture toughness of ultrahigh strength, medium carbon, low alloy steels for aerospace applications[J]. Int. Mater. Rev., 2000, 45: 27
[2] Sun H M, Li M Q, Liu Y G.Development of processing map coupling grain size for the isothermal compression of 300 M steel[J]. Mater. Sci. Eng., 2014, A595: 77
[3] Hemphill R M, Wert D E, Novotny P M, et al.High strength, high fracture toughness alloy [P]. US Pat, 5268044, 1993
[4] Zhao Z Y.Studing status on the secondary hardening phenomenon in ultra-high strength steels[J]. J. Aeronaut. Mater., 2002, 22(4): 46(赵振业. 超高强度钢中二次硬化现象研究 [J]. 航空材料学报, 2002, 22(4): 46)
[5] Manigandan K, Srivatsan T S, Tammana D, et al.Influence of microstructure on strain-controlled fatigue and fracture behavior of ultra high strength alloy steel AerMet 100[J]. Mater. Sci. Eng., 2014, A601: 29
[6] Liu P, Cai J P, Wang X D, et al.Progress of aircraft landing gear material protection technology[J]. Equip. Environ. Eng., 2011, 8(2): 67(刘鹏, 蔡健平, 王旭东等. 飞机起落架材料防护技术现状及研究进展 [J]. 装备环境工程, 2011, 8(2): 67)
[7] Li B.Methods for improving adhesion of HVOF spraying coatings on 300M steel parts[J]. New Technol. New Process, 2015,(2): 121(李 博. 提高300M钢零件HVOF涂层结合力的方法 [J]. 新技术新工艺, 2015, (2): 121)
[8] Seo J Y, Park S K, Kwon H, et al.Influence of carbide modifications on the mechanical properties of ultra-high-strength stainless steels[J]. Metall. Mater. Trans., 2017, 48A: 4477
[9] Kuehmann C, Tufts B, Trester P.Computational design for ultra high-strength alloy[J]. Adv. Mater. Proc., 2008, 166: 37
[10] Zhong P, Zhang Y Q, Zhong J Y, et al.A new type of structural material S280[J]. Sci. Technol. Rev., 2015, 33(11): 59(钟平, 张业勤, 钟锦岩等. 一种新型结构材料S280 [J]. 科技导报, 2015, 33(11): 59)
[11] Zhan Z W, Sun Z H, Tang Z H.Effect of chemical passivation on properities of S280 ultra high-strength stainless steel[J]. Corros. Prot., 2015, 36: 742(詹中伟, 孙志华, 汤智慧. 化学钝化对S280超高强度不锈钢综合性能的影响 [J]. 腐蚀与防护, 2015, 36: 742)
[12] Martin J W, Kosa T.Ultra-high-strength precipitation-hardenable stainless steel and strip made therefrom [P]. US Pat, 6630103B2, 2003
[13] Ifergane S, Sabatani E, Carmeli B, et al.Hydrogen diffusivity measurement and microstructural characterization of Custom 465 stainless steel[J]. Electrochim. Acta, 2015, 178: 494
[14] H?ttestrand M, Nilsson J O, Stiller K, et al.Precipitation hardening in a 12%Cr-9%N-4%Mo-2%Cu stainless steel[J]. Acta Mater., 2004, 52: 1023
[15] Guo Z, Sha W, Vaumousse D.Microstructural evolution in a PH13-8 stainless steel after ageing[J]. Acta Mater., 2003, 51: 101
[16] Hsiao C N, Chiou C S, Yang J R.Aging reactions in a 17-4 PH stainless steel[J]. Mater. Chem. Phys., 2002, 74: 134
[17] Bajguirani H R H. The effect of ageing upon the microstructure and mechanical properties of type 15-5 PH stainless steel[J]. Mater. Sci. Eng., 2002, A338: 142
[18] Song Q M.High-performance and aviation application of custom 465? stainless steel[J]. Aeronaut. Manuf. Technol, 2012,(15): 104(宋全明. Custom 465?新型不锈钢的卓越性能及航空应用 [J]. 航空制造技术, 2012, (15): 104)
[19] Long W Q.Development of large size steel Bar 0Cr17Ni4Cu4Nb for large size aero-engine casing[J]. Spec. Steel Technol., 2014, 20(2): 4(隆文庆. 大尺寸机匣用0Cr17Ni4Cu4Nb钢大规格棒材研制 [J]. 特钢技术, 2014, 20(2): 4)
[20] Schnitzer R, Radis R, N?hrer M, et al.Reverted austenite in PH 13-8 Mo maraging steels[J]. Mater. Chem. Phys., 2010, 122: 138
[21] Bhambroo R, Roychowdhury S, Kain V, et al.Effect of reverted austenite on mechanical properties of precipitation hardenable 17-4 stainlesssteel[J]. Mater. Sci. Eng., 2013, A568: 127
[22] Tian J L, Wang W, Yan W, et al.Cracking due to Cu and Ni segregation in a 17-4 PH stainless steel piston rod[J]. Eng. Fail. Anal., 2016, 65: 57
[23] Wert D E, Disabella R P.Strong, corrosion-resistant stainless steel[J]. Adv. Mater. Proc., 2006, 164: 34
[24] Ping D H, Ohnuma M, Hirakawa Y, et al.Microstructural evolution in 13Cr-8Ni-2.5Mo-2Al martensitic precipitation-hardened stainless steel[J]. Mater. Sci. Eng., 2005, A394: 285
[25] Primig S, Stechauner G, Kozeschnik E.Early stages of Cu precipitation in 15-5 PH maraging steel revisited—Part I: Experimental analysis[J]. Steel Res. Int., 2017, 88: 1600084
[26] Andersson M, Stiller K, H?ttestrand M.Comparison of early stages of precipitation in Mo-rich and Mo-poor maraging stainless steels[J]. Surf. Interface Anal., 2007, 39: 195
[27] Schober M, Schnitzer R, Leitner H.Precipitation evolution in a Ti-free and Ti-containing stainless maraging steel[J]. Ultramicroscopy, 2009, 109: 553
[28] Jiao Z B, Luan J H, Zhang Z W, et al.Synergistic effects of Cu and Ni on nanoscale precipitation and mechanical properties of high-strength steels[J]. Acta Mater., 2013, 61: 5996
[29] Decker R F, Floreen S.Maraging Steel Recent Developments and Applications Proceedings of Symposium of TMS Meeting[M]. Huntington: The Minerals, Metal & Materials Society, 1988: 1
[30] Tian J L, Wang W, Yin L C, et al.Three dimensional atom probe and first-principles studies on spinodal decomposition of Cr in a Co-alloyed maraging stainless steel[J]. Scr. Mater., 2016, 121: 37
[31] Zhang L, Xiang Z L, Li X D, et al.Spinodal decomposition in Fe-25Cr-12Co alloys under the influence of high magnetic field and the effect of grain boundary[J]. Nanomaterials, 2018, 8: 578
[32] Miller M K, Russell K F. Comparison of the rate of decomposition in Fe-45%Cr, Fe-45%Cr-5%Ni and duplex stainless steels [J]. Appl. Surf. Sci., 1996, 94-95: 398
[33] Stiller K, H?ttestrand M, Danoix F.Precipitation in 9Ni-12Cr-2Cu maraging steels[J]. Acta Mater., 1998, 46: 6063
[34] Jin S, Mahajan S, Brasen D.Mechanical properties of Fe-Cr-Co ductile permanent magnet alloys[J]. Metall. Mater. Trans., 1980, 11A: 69
[35] Hedstr?m P, Fei H Y, Zhou J, et al.The 475 ℃ embrittlement in Fe-20Cr and Fe-20Cr-X (X=Ni, Cu, Mn) alloys studied by mechanical testing and atom probe tomography[J]. Mater. Sci. Eng., 2013, A574: 123
[36] Ha K F, Zhang H M, Jing K L.An investigation on the mechanism of 475 ℃ embrittlement in high-Cr ferritic stainless steel[J]. Metall. Trans., 1989, 20A: 2563
[37] Park K H, LaSalle J C, Schwartz L H, et al. Mechanical properties of spinodally decomposed Fe-30 wt% Cr alloys: Yield strength and aging embrittlement[J]. Acta Metall., 1986, 34: 1853
[38] Minowa T, Okada M, Homma M.Further studies of the miscibility gap in an Fe-Cr-Co permanent magnet system[J]. IEEE Trans. Magn., 1980, 16: 529
[39] Zhu F, Haasen P, Wagner R.An atom probe study of the decomposition of Fe-Cr-Co permanent magnet alloys[J]. Acta Metall., 1986, 34: 457
[40] Brown J E, Smith G D W. Atom probe studies of spinodal processes in duplex stainless steels and single- and dual-phase Fe-Cr-Ni alloys[J]. Surf. Sci., 1991, 246: 285
[41] Klaver T P C, Drautz R, Finnis M W. Magnetism and thermodynamics of defect-free Fe-Cr alloys[J]. Phys. Rev., 2006, 74B: 094435
[42] Kaneko H, Homma M, Nakamura K, et al.Phase diagram of Fe-Cr-Co permanent magnet system[J]. IEEE Trans. Magn., 1977, 13: 1325
[43] Tian J L, Wang W, Shahzad M B, et al.A new maraging stainless steel with excellent strength-toughness-corrosion synergy[J]. Materials (Basel), 2016, 121: E1293
[44] Tian J L, Shahzad M B, Wang W, et al.Role of Co in formation of Ni-Ti clusters in maraging stainless steel[J]. J. Mater. Sci. Technol., 2018, 34: 1671
[45] Díaz-Ortiz A, Drautz R, F?hnle M, et al.First-principles modeling of magnetism and phase equilibria in binary alloys[J]. J. Alloys Compd., 2004, 369: 27
[46] Kuhnen C A, Bohland-Filho J.Electronic and magnetic structure of ordered Fe-Ni alloys[J]. Braz. J. Phys., 1993, 23: 288
[47] Cheng H P, Ellis D E.First-principles potentials in modeling structure and thermodynamics of Fe-Ni alloys[J]. Phys. Rev., 1989, 39B: 12469
[48] Weston W F, Granato A V.Cubic and hexagonal single-crystal elastic constants of a cobalt-nickel alloy[J]. Phys. Rev., 1975, 12B: 5355
[49] Natarajan Sathiyamoorthy Venkataramanan.Structures of small NixTiy (x+y≤5) clusters: A DFT study[J]. J. Mol. Struct.: THEO CHEM, 2008, 856: 9
[50] Zhu L F, Friák M, Dick A, et al.First-principles study of the thermodynamic and elastic properties of eutectic Fe-Ti alloys[J]. Acta Mater., 2012, 60: 1594
[51] Cacciamani G, Ferro R, Ansara I, et al.Thermodynamic modelling of the Co-Ti system[J]. Intermetallics, 2000, 8: 213
[52] Li Y C, Yan W, Cotton J D, et al.A new 1.9 GPa maraging stainless steel strengthened by multiple precipitating species[J]. Mater. Des., 2015, 82: 56
[53] Tian J L, Wang W, Shahzad M B, et al.Corrosion resistance of Co-containing maraging stainless steel[J]. Acta Metall. Sin.(Engl. Lett.), 2018, 31: 785
[54] Abdelshehid M, Mahmodieh K, Mori K, et al.On the correlation between fracture toughness and precipitation hardening heat treatments in 15-5PH Stainless Steel[J]. Eng. Fail. Anal., 2007, 14: 626
[55] Rack H J, Kalish D.The strength, fracture toughness, and low cycle fatigue behavior of 17-4 PH stainless steel[J]. Metall. Trans., 1974, 5: 1595
[56] Rossi D J, Rossi J D.PH stainless is tougher than you thought[J]. Adv. Mater. Proc., 1987, 131: 45
[1] SI Yongli, XUE Jintao, WANG Xingfu, LIANG Juhua, SHI Zimu, HAN Fusheng. Effect of Cr Addition on the Corrosion Behavior of Twinning-Induced Plasticity Steel[J]. 金属学报, 2023, 59(7): 905-914.
[2] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[3] XU Linjie, LIU Hui, REN Ling, YANG Ke. Effect of Cu on In-Stent Restenosis and Corrosion Resistance of Ni-Ti Alloy[J]. 金属学报, 2023, 59(4): 577-584.
[4] ZHAO Xiaofeng, LI Ling, ZHANG Han, LU Jie. Research Progress in High-Entropy Alloy Bond Coat Material for Thermal Barrier Coatings[J]. 金属学报, 2022, 58(4): 503-512.
[5] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[6] HUANG Yichuan, WANG Qing, ZHANG Shuang, DONG Chuang, WU Aimin, LIN Guoqiang. Optimization of Stainless Steel Composition for Fuel Cell Bipolar Plates[J]. 金属学报, 2021, 57(5): 651-664.
[7] ZHU Wenting, CUI Junjun, CHEN Zhenye, FENG Yang, ZHAO Yang, CHEN Liqing. Design and Performance of 690 MPa Grade Low-Carbon Microalloyed Construction Structural Steel with High Strength and Toughness[J]. 金属学报, 2021, 57(3): 340-352.
[8] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] CHEN Yongjun, BAI Yan, DONG Chuang, XIE Zhiwen, YAN Feng, WU Di. Passivation Behavior on the Surface of Stainless Steel Reinforced by Quasicrystal-Abrasive via Finite Element Simulation[J]. 金属学报, 2020, 56(6): 909-918.
[11] Lin WEI,Zhijun WANG,Qingfeng WU,Xuliang SHANG,Junjie LI,Jincheng WANG. Effect of Mo Element and Heat Treatment on Corrosion Resistance of Ni2CrFeMox High-Entropy Alloyin NaCl Solution[J]. 金属学报, 2019, 55(7): 840-848.
[12] Xiubing LIANG, Jianwen FAN, Zhibin ZHANG, Yongxiong CHEN. Microstructure and Corrosion Properties of Aluminum Base Amorphous and Nanocrystalline Composite Coating[J]. 金属学报, 2018, 54(8): 1193-1203.
[13] Li FAN, Haiyan CHEN, Yaohua DONG, Xueying LI, Lihua DONG, Yansheng YIN. Corrosion Behavior of Fe-Based Laser Cladding Coating in Hydrochloric Acid Solutions[J]. 金属学报, 2018, 54(7): 1019-1030.
[14] Haiou YANG, Xuliang SHANG, Lilin WANG, Zhijun WANG, Jincheng WANG, Xin LIN. Effect of Constituent Elements on the Corrosion Resistance of Single-Phase CoCrFeNi High-Entropy Alloys in NaCl Solution[J]. 金属学报, 2018, 54(6): 905-910.
[15] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
No Suggested Reading articles found!