Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1525-1536    DOI: 10.11900/0412.1961.2018.00318
Microstructures Current Issue | Archive | Adv Search |
Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials
Feng LIU(), Linke HUANG, Yuzeng CHEN
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

Feng LIU, Linke HUANG, Yuzeng CHEN. Concurrence of Phase Transition and Grain Growth in Nanocrystalline Metallic Materials. Acta Metall Sin, 2018, 54(11): 1525-1536.

Download:  HTML  PDF(9273KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The concurrence of solid-state phase transition and grain growth is ubiquitous in thermal processing of metallic materials; understanding the concurrence is significant for manipulation of microstructure and design of structured materials with high strength and good ductility. This work will briefly review the recent progresses on the concurrence in nanocrystalline metallic materials, with particular attention to the physical origin, typical examples, underlying mechanisms, as well as microstructures, of the concurrence. On this basis, perspectives on scientific understanding of the occurrence in nanocrystalline materials are addressed.

Key words:  phase transition      grain growth      nanocrystalline metallic material      concurrence     
Received:  09 July 2018     
ZTFLH:  TG113  
Fund: Supported by National Key Research and Development Program of China (Nos.2017YFB0305100 and 2017YFB0703001), National Natural Science Foundation of China (Nos.51431008 and 51790481), Fundamental Research Funds for the Central Universities (No.3102017jc01002) and Research Fund of State Key Laboratory of Solidification Processing of Northwestern Polytechnical University (No.117-TZ-2015)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00318     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1525

Fig.1  Concurrence of recrystallization and ferrite to austenite transformation upon heating the cold-rolled Fe-0.15C-1.48Mn-0.013Si steel[47]
(a) volume fraction (Fv) of austenite, recrystallized and deformed ferrite as a function of time
(b) electron backscatter diffraction (EBSD) map of microstructure obtained by the concurrence (Red, green and blue correspond to martensite (austenite), deformed ferrite and recrystallized ferrite, respectively)
Fig.2  The microstructure by concurrence of precipitation and recrystallization in the Al-Mn alloy. Mn-rich precipitates disperse into the well-defined matrix[53] (ND—normal direction, RD—rolling direction)
Fig.3  Concurrence of phase boundary (PB) and grain boundary (GB) migrations characterized by in situ high-resolution transmission electron microscopy (HRTEM) in the nanocrystalline Fe91Ni8Zr1 alloy[17] (A series of in situ HRTEM images show the concurrence of GB (highlighted in red) and PB (highlighted in yellow) migrations with time at 600 ℃. Two PB segments are indexed as PB1 and PB2, respectively. The initial time of interest is set as t=0 s. 0~7 s: the region of interest is ferrite and only GB migration is observed; 26~74 s: both GB and PB migrations occur; 92~123 s: the region of interest is totally transformed into austenite and thus austenite growth is observed)
Fig.4  Interaction between PB and GB migrations[17]
(a) the new phase forms at GB (b) PB is propagating toward GB
(c) PB is intersecting with GB (d) PB has crossed over GB
Fig.5  Effect of GB on the PB migration and the corresponding migration direction[17]. The velocity of PB migration is retarded (a) and the corresponding migration direction varies markedly (b) once the PB crosses over the GB-affected zone
Fig.6  APT analysis of the nanocrystalline Fe91Ni8Zr1 alloy with single ferrite phase[18]
(a) Ni and C segregate at GBs; two GB segments (i.e. GB1 and GB2) are indicated by black arrows. Zr-O-based clusters are observed to almost homogeneously distribute through the whole detected volume
(b) top: isoconcentration surfaces plotted at 7% ZrO (atomic fraction) revealing the dispersion of Zr-O-based nanoclusters. Bottom: quantitative chemical analysis of Ni and C across the GB1 and GB2 shown in Fig.6a
Fig.7  Bright-field images captured from the in situ TEM heating experiment revealing the austenite growth behavior in the nanocrystalline Fe91Ni8Zr1 alloy[18]
(a) three ferrite grains are labeled as G1, G2 and G3; two GB segments (i.e. G1/G2, G2/G3) are highlighted by purple arrows
(b~f, h) formation and sluggish growth of the austenite phase
(g) diffraction pattern showing the coexistence of ferrite and austenite phase
(i) PB displacement as a function of temperature (Inset shows the evolution of PB position during the trajectory that normal to the GB segment)
Fig.8  APT analysis of nanocrystalline Fe91Ni8Zr1 alloy with dual-phase bimodal nanostructure[18]
(a) the detected volume is separated by a clear PB: Ni (green dots) and C (red dots) enriched and depleted regions can be identified as the austenite and ferrite phase, respectively. Zr-O-based clusters are observed to homogeneously distribute through the austenite and ferrite phase
(b) top: isoconcentration surfaces plotted at 9% Ni (green) and 7% ZrO (purple) revealing the PB and the dispersion of Zr-O-based nanoclusters, respectively. Bottom: proximity histogram for the indicated isoconcentration surfaces at 9% Ni showing quantitative compositional partitioning in the ferrite and austenite phase
Fig.9  Dual-phase bimodal nanostructure of nanocrystalline Fe91Ni8Zr1 alloy[18] (Left: nano-/ultrafine austenite is embedded inside the nano-matrix of ferrite, dividing the nanocrystalline system into a series of constrained transformation cells. Right: interface map showing the PBs and GBs)
Material Precipitate Ref.
Al93Fe3Cr2Ti2 Al6Fe, Al13Fe4, Al3Ti, Al13Cr2 [22]
Al-6.5%Mn (atomic fraction) Al6Mn [23]
Cu-10%Ta (atomic fraction) Ta [24]
Cu-Nb

Nb-oxide-based clusters,
(NbO & NbN)-based clusters,
(Nb + Fe) precipitates,
(Nb)-based precipitates
[25]

Cu75Fe25 CuO, Fe2O3 [26]
Mg-Gd-Y-Zr Mg4(Gd,Y), Mg5(Gd,Y) [27]
Mg-Al Mg17Al12 [28]
Ni-P Ni3P [29~31]
Ni-S Ni3S2 [32]
Ni-23%C (atomic fraction) Ni6W6C [33]
Ni-Ti-W W [34]
Fe-Mg MgO [35,36]
Table 1  Examples of precipitates in nanocrystalline metallic materials[22,23,24,25,26,27,28,29,30,31,32,33,34,35,36]
[1] Meyers M A, Mishra A, Benson D J.Mechanical properties of nanocrystalline materials[J]. Prog. Mater. Sci., 2006, 51: 427
[2] Zhu Y T, Liao X Z.Nanostructured metals: Retaining ductility[J]. Nat. Mater., 2004, 3: 351
[3] Dao M, Lu L, Asaro R J, et al.Toward a quantitative understanding of mechanical behavior of nanocrystalline metals[J]. Acta Mater., 2007, 55: 4041
[4] He B B, Hu B, Yen H W, et al.High dislocation density-induced large ductility in deformed and partitioned steels[J]. Science, 2017, 357: 1029
[5] Koyama M, Zhang Z, Wang M M, et al.Bone-like crack resistance in hierarchical metastable nanolaminate steels[J]. Science, 2017, 355: 1055
[6] Gianola D S, Van Petegem S, Legros M, et al.Stress-assisted discontinuous grain growth and its effect on the deformation behavior of nanocrystalline aluminum thin films[J]. Acta Mater., 2006, 54: 2253
[7] Cheng S, Zhao Y H, Wang Y M, et al.Structure modulation driven by cyclic deformation in nanocrystalline NiFe[J]. Phys. Rev. Lett., 2010, 104: 255501
[8] Ma E, Zhu T.Towards strength-ductility synergy through the design of heterogeneous nanostructures in metals[J]. Mater. Today, 2017, 20: 323
[9] Wu X L, Zhu Y T.Heterogeneous materials: A new class of materials with unprecedented mechanical properties[J]. Mater. Res. Lett., 2017, 5: 527
[10] Peng H R, Gong M M, Chen Y Z, et al.Thermal stability of nanocrystalline materials: Thermodynamics and kinetics[J]. Int. Mater. Rev., 2016, 62: 303
[11] Xu Z Y.Phase transformations in nanocrystalline materials[J]. Shanghai Met., 2003, 24(1): 11(徐祖耀. 纳米材料的相变 [J]. 上海金属, 2003, 24(1): 11)
[12] Del Bianco L, Ballesteros C, Rojo J M, et al.Magnetically ordered fcc structure at the relaxed grain boundaries of pure nanocrystalline Fe[J]. Phys. Rev. Lett., 1998, 81: 4500
[13] Xiao F, Cheng W, Jin X J.Phase stability in pulse electrodeposited nanograined Co and Fe-Ni[J]. Scr. Mater., 2010, 62: 496
[14] Wang L M, Wang Z B, Lu K.Grain size effects on the austenitization process in a nanostructured ferritic steel[J]. Acta Mater., 2011, 59: 3710
[15] Dake J M, Krill III C E. Sudden loss of thermal stability in Fe-based nanocrystalline alloys[J]. Scr. Mater., 2012, 66: 390
[16] Kotan H, Darling K A, Saber M, et al.An in situ experimental study of grain growth in a nanocrystalline Fe91Ni8Zr1 alloy[J]. J. Mater. Sci., 2012, 48: 2251
[17] Huang L K, Lin W T, Lin B, et al.Exploring the concurrence of phase transition and grain growth in nanostructured alloy[J]. Acta Mater., 2016, 118: 306
[18] Huang L K, Lin W T, Wang K, et al.Grain boundary-constrained reverse austenite transformation in nanostructured Fe alloy: Model and application[J]. Acta Mater., 2018, 154: 56
[19] Choi P, Da Silva M, Klement U, et al.Thermal stability of electrodeposited nanocrystalline Co-1.1at.%P[J]. Acta Mater., 2005, 53: 4473
[20] Hibbard G D, Palumbo G, Aust K T, et al.Nanoscale combined reactions: non-equilibrium α-Co formation in nanocrystalline ε-Co by abnormal grain growth[J]. Philos. Mag., 2006, 86: 125
[21] Li J Y, Ni C, Liu J Y, et al.Extraordinary stability of nano-twinned structure formed during phase transformation coupled with grain growth in electrodeposited Co-Ni alloys[J]. Mater. Chem. Phys., 2014, 148: 1202
[22] Shaw L, Luo H, Villegas J, et al.Thermal stability of nanostructured Al93Fe3Cr2Ti2 alloys prepared via mechanical alloying[J]. Acta Mater., 2003, 51: 2647
[23] Huang T Y, Kalidindi A R, Schuh C A.Grain growth and second-phase precipitation in nanocrystalline aluminum-manganese electrodeposits[J]. J. Mater. Sci., 2017, 53: 3709
[24] Darling K A, Rajagopalan M, Komarasamy M, et al.Extreme creep resistance in a microstructurally stable nanocrystalline alloy[J]. Nature, 2016, 537: 378
[25] Kapoor M, Kaub T, Darling K A, et al.An atom probe study on Nb solute partitioning and nanocrystalline grain stabilization in mechanically alloyed Cu-Nb[J]. Acta Mater., 2017, 126: 564
[26] Guo J M, Haberfehlner G, Rosalie J, et al.In situ atomic-scale observation of oxidation and decomposition processes in nanocrystalline alloys[J]. Nat. Commun., 2018, 9: 946
[27] Tang L L, Zhao Y H, Islamgaliev R K, et al.Microstructure and thermal stability of nanocrystalline Mg-Gd-Y-Zr alloy processed by high pressure torsion[J]. J. Alloys Compd., 2017, 721: 577
[28] Kruska K, Rohatgi A, Vemuri R S, et al.Grain growth in nanocrystalline Mg-Al thin films[J]. Metall. Mater. Trans., 2017, 48A: 6118
[29] Hentschel T, Isheim D, Kirchheim R, et al.Nanocrystalline Ni-3.6 at.% P and its transformation sequence studied by atom-probe field-ion microscopy[J]. Acta Mater., 2000, 48: 933
[30] F?rber B, Cadel E, Menand A, et al.Phosphorus segregation in nanocrystalline Ni-3.6 at.% P alloy investigated with the tomographic atom probe (TAP)[J]. Acta Mater., 2002, 48: 789
[31] Prasad M J N V., Chokshi A H. Microstructural stability and superplasticity in an electrodeposited nanocrystalline Ni-P alloy[J]. Acta Mater., 2011, 59: 4055
[32] Prasad M J N V, Chokshi A H. On the exothermic peak during annealing of electrodeposited nanocrystalline nickel[J]. Scr. Mater., 2011, 64: 544
[33] Marvel C J, Cantwell P R, Harmer M P.The critical influence of carbon on the thermal stability of nanocrystalline Ni-W alloys[J]. Scr. Mater., 2015, 96: 45
[34] Ahadi A, Kalidindi A R, Sakurai J, et al.The role of W on the thermal stability of nanocrystalline NiTiWx thin films[J]. Acta Mater., 2018, 142: 181
[35] Clark B G, Hattar K, Marshall M T, et al.Thermal stability comparison of nanocrystalline Fe-based binary alloy pairs[J]. JOM, 2016, 68: 1625
[36] Amram D, Schuh C A.Interplay between thermodynamic and kinetic stabilization mechanisms in nanocrystalline Fe-Mg alloys[J]. Acta Mater., 2018, 144: 447
[37] Khalajhedayati A, Rupert T J.High-temperature stability and grain boundary complexion formation in a nanocrystalline Cu-Zr alloy[J]. JOM, 2015, 67: 2788
[38] Khalajhedayati A, Pan Z L, Rupert T J.Manipulating the interfacial structure of nanomaterials to achieve a unique combination of strength and ductility[J]. Nat. Commun., 2016, 7: 10802
[39] Schuler J D, Donaldson O K, Rupert T J.Amorphous complexions enable a new region of high temperature stability in nanocrystalline Ni-W[J]. Scr. Mater., 2018, 154: 49
[40] Hornbogen E.Combined reactions[J]. Metall. Trans., 1979, 10A: 947
[41] Yang D Z, Brown E L, Matlock D K, et al.The formation of austenite at low intercritical annealing temperatures in a normalized 0.08C-1.45Mn-0.21Si steel[J]. Metall. Trans., 1985, 16A: 1523
[42] Yang D Z, Brown E L, Matlock D K, et al.Ferrite recrystallization and austenite formation in cold-rolled intercritically annealed steel[J]. Metall. Trans., 1985, 16A: 1385
[43] Huang J, Poole W J, Militzer M.Austenite formation during intercritical annealing[J]. Metall. Mater. Trans., 2004, 35A: 3363
[44] Ogawa T, Maruyama N, Sugiura N, et al.Incomplete recrystallization and subsequent microstructural evolution during intercritical annealing in cold-rolled low carbon steels[J]. ISIJ Int., 2010, 50: 469
[45] Azizi-Alizamini H, Militzer M, Poole W J.Austenite formation in plain low-carbon steels[J]. Metall. Mater. Trans., 2011, 42A: 1544
[46] Zheng C W, Raabe D.Interaction between recrystallization and phase transformation during intercritical annealing in a cold-rolled dual-phase steel: A cellular automaton model[J]. Acta Mater., 2013, 61: 5504
[47] Chbihi A, Barbier D, Germain L, et al.Interactions between ferrite recrystallization and austenite formation in high-strength steels[J]. J. Mater. Sci., 2014, 49: 3608
[48] Barbier D, Germain L, Hazotte A, et al.Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels[J]. J. Mater. Sci., 2015, 50: 374
[49] Ollat M, Massardier V, Fabregue D, et al.Modeling of the recrystallization and austenite formation overlapping in cold-rolled dual-phase steels during intercritical treatments[J]. Metall. Mater. Trans., 2017, 48A: 4486
[50] Zhang J L, Raabe D, Tasan C C.Designing duplex, ultrafine-grained Fe-Mn-Al-C steels by tuning phase transformation and recrystallization kinetics[J]. Acta Mater., 2017, 141: 374
[51] Jones M J, Humphreys F J.Interaction of recrystallization and precipitation: The effect of Al3Sc on the recrystallization behaviour of deformed aluminium[J]. Acta Mater., 2003, 51: 2149
[52] Morris J G, Liu W C.Al alloys: The influence of concurrent precipitation on recrystallization behavior, kinetics, and texture[J]. JOM, 2005, 57(11): 44
[53] Tangen S, Sj?lstad K, Furu T, et al.Effect of concurrent precipitation on recrystallization and evolution of the P-texture component in a commercial Al-Mn alloy[J]. Metall. Mater. Trans., 2010, 41A: 2970
[54] Huang K, Zhang K, Marthinsen K, et al.Controlling grain structure and texture in Al-Mn from the competition between precipitation and recrystallization[J]. Acta Mater., 2017, 141: 360
[55] Sasaki T T, Yamamoto K, Honma T, et al.A high-strength Mg-Sn-Zn-Al alloy extruded at low temperature[J]. Scr. Mater., 2008, 59: 1111
[56] Oh-ishi K, Mendis C L, Homma T, et al. Bimodally grained microstructure development during hot extrusion of Mg-2.4Zn-0.1Ag-0.1Ca-0.16Zr (at.%) alloys[J]. Acta Mater., 2009, 57: 5593
[57] Schinhammer M, Pecnik C M, Rechberger F, et al.Recrystallization behavior, microstructure evolution and mechanical properties of biodegradable Fe-Mn-C(-Pd) TWIP alloys[J]. Acta Mater., 2012, 60: 2746
[58] Azizi-Alizamini H, Militzer M, Poole W J.A novel technique for developing bimodal grain size distributions in low carbon steels[J]. Scr. Mater., 2007, 57: 1065
[59] Kwon O, DeArdo A J. Interactions between recrystallization and precipitation in hot-deformed microalloyed steels[J]. Acta Metall. Mater., 1991, 39: 529
[60] Huang K, Marthinsen K, Zhao Q L, et al.The double-edge effect of second-phase particles on the recrystallization behaviour and associated mechanical properties of metallic materials[J]. Prog. Mater. Sci., 2018, 92: 284
[61] Embury J D, Deschamps A, Brechet Y.The interaction of plasticity and diffusion controlled precipitation reactions[J]. Scr. Mater., 2003, 49: 927
[62] Xu Z Y.Martensitic Transformation and Martensite [M]. Beijing: Academic Press, 1980: 1(徐祖耀. 马氏体相变与马氏体 [M]. 北京: 科学出版社, 1980: 1)
[63] Chen I W, Chiao Y H, Tsuzaki K.Statistics of martensitic nucleation[J]. Acta Metall., 1985, 33: 1847
[64] Waitz T, Tsuchiya K, Antretter T, et al.Phase transformations of nanocrystalline martensitic materials[J]. MRS Bull., 2011, 34: 814
[65] Tu J B, Jiang B H, Hsu T Y, et al.The size effect of the martensitic transformation in ZrO2-containing ceramics[J]. J. Mater. Sci., 1994, 29: 1662
[66] Waitz T, Antretter T, Fischer F D, et al.Size effects on martensitic phase transformations in nanocrystalline NiTi shape memory alloys[J]. Mater. Sci. Technol., 2008, 24: 934
[67] Haslam A J, Phillpot S R, Wolf D, et al.Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation[J]. Mater. Sci. Eng., 2001, A318: 293
[68] Koch C C, Scattergood R O, Saber M, et al.High temperature stabilization of nanocrystalline grain size: Thermodynamic versus kinetic strategies[J]. J. Mater. Res., 2013, 28: 1785
[69] Andrievski R A.Review of thermal stability of nanomaterials[J]. J. Mater. Sci., 2013, 49: 1449
[70] Geslin P A, Xu Y C, Karma A.Morphological instability of grain boundaries in two-phase coherent solids[J]. Phys. Rev. Lett., 2015, 114: 105501
[71] Shvindlerman L S, Gottstein G.Precipitation accelerated grain growth[J]. Scr. Mater., 2004, 50: 1051
[72] Rupert T J.The role of complexions in metallic nano-grain stability and deformation[J]. Curr. Opin. Solid State Mater. Sci., 2016, 20: 257
[73] Darling K A, VanLeeuwen B K, Koch C C, et al. Thermal stability of nanocrystalline Fe-Zr alloys[J]. Mater. Sci. Eng., 2010, A527: 3572
[74] Liu F, Wang K.Discussions on the correlation between thermodynamics and kinetics during the phase transformations in the TMCP of low-alloy steels[J]. Acta Metall. Sin., 2016, 52: 1326(刘峰, 王慷. 低合金钢TMCP中相变热力学/动力学相关性探讨 [J]. 金属学报, 2016, 52: 1326)
[75] Wang K, Shang S L, Wang Y, et al.Martensitic transition in Fe via Bain path at finite temperatures: A comprehensive first-principles study[J]. Acta Mater., 2018, 147: 261
[1] HAN Ruyang, YANG Gengwei, SUN Xinjun, ZHAO Gang, LIANG Xiaokai, ZHU Xiaoxiang. Austenite Grain Growth Behavior of Vanadium Microalloying Medium Manganese Martensitic Wear-Resistant Steel[J]. 金属学报, 2022, 58(12): 1589-1599.
[2] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[3] ZHANG Shaohua, XIE Guang, DONG Jiasheng, LOU Langhong. Investigation on Eutectic Dissolution Behavior of Single Crystal Superalloy by Differential Scanning Calorimetry[J]. 金属学报, 2021, 57(12): 1559-1566.
[4] WANG Chao, ZHANG Xu, WANG Yumin, YANG Qing, YANG Lina, ZHANG Guoxing, WU Ying, KONG Xu, YANG Rui. Mechanisms of Interfacial Reaction and Matrix Phase Transition in SiCf /Ti65 Composites[J]. 金属学报, 2020, 56(9): 1275-1285.
[5] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[6] SUN Zhengyang, WANG Yutian, LIU Wenbo. Phase-Field Simulation of the Interaction Between Pore and Grain Boundary[J]. 金属学报, 2020, 56(12): 1643-1653.
[7] Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification[J]. 金属学报, 2018, 54(5): 657-668.
[8] Yajun HUI,Hui PAN,Wenyuan LI,Kun LIU,Bin CHEN,Yang CUI. Study on Heating Schedule of 1000 MPa Grade Nb-Ti Microalloyed Ultra-High Strength Steel[J]. 金属学报, 2017, 53(2): 129-139.
[9] Jianguo WANG,Dong LIU,Yanhui YANG. MECHANISMS OF NON-UNIFORM MICROSTRUC-TURE EVOLUTION IN GH4169 ALLOYDURING HEATING PROCESS[J]. 金属学报, 2016, 52(6): 707-716.
[10] WANG Shaobo, LIU Danmin, XIAO Weiqiang, ZHANG Zhenlu, YUE Ming, ZHANG Jiuxing. RESEARCH OF THE MAGNETOCALORIC PROPER- TIES IN Mn1.2Fe0.8P0.74Ge0.26-xSex COMPOUNDS[J]. 金属学报, 2014, 50(9): 1109-1114.
[11] ZHANG Hang, XU Qingyan, SHI Zhenxue, LIU Baicheng. NUMERICAL SIMULATION OF DENDRITE GRAIN GROWTH OF DD6 SUPERALLOY DURING DIRECTIONAL SOLIDIFICATION PROCESS[J]. 金属学报, 2014, 50(3): 345-354.
[12] ZHOU Deqiang, LIU Xiongjun, WU Yuan, WANG Hui, LV Zhaoping. RECRYSTALLIZATION BEHAVIOR AND ITS INFLU- ENCES ON MECHANICAL PROPERTIES OF AN ALUMINA-FORMING AUSTENITIC STAINLESS STEELS[J]. 金属学报, 2014, 50(10): 1217-1223.
[13] WU Yan, ZONG Yaping,ZHANG Xiangang. MICROSTRUCTURE EVOLUTION OF NANOCRYSTALLINE AZ31 MAGNESIUM ALLOY BY PHASE FIELD SIMULATION[J]. 金属学报, 2013, 49(7): 789-796.
[14] ZHANG Meng, LIU Danmin, LIU Cuixiu, HUANG Qingzhen, WANG Shaobo, ZHANG Hu, YUE Ming. RESEARCH OF THE RELATIONSHIP BETWEEN PHASE TRANSITION PROCESS AND MAGNETIC PROPERTIES IN MAGNETIC REFRIGERATION MATERIAL Mn1.2Fe0.8P0.76Ge0.24[J]. 金属学报, 2013, 49(7): 783-788.
[15] ZHANG Zhuanzhuan WU Chuansong Gao Jinqiang. PREDICTION OF GRAIN GROWTH IN HYBRID WELDING HAZ OF TCS STAINLESS STEEL[J]. 金属学报, 2012, 48(2): 199-204.
No Suggested Reading articles found!