Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1479-1489    DOI: 10.11900/0412.1961.2018.00247
Microstructures Current Issue | Archive | Adv Search |
The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties
Weihua WANG1,2(), Peng LUO1,2()
1 Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
Cite this article: 

Weihua WANG, Peng LUO. The Dynamic Behavior Hidden in the Long Time Scale of Metallic Glasses and Its Effect on the Properties. Acta Metall Sin, 2018, 54(11): 1479-1489.

Download:  HTML  PDF(2652KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metallic glasses (MGs) have disordered microstructure and no defects like in crystalline materials and possess a suite of outstanding mechanical and functional properties, showing thus promising potential for wide applications. Due to the lack of long range structural order, it is fraught with difficulties to construct the structure-property relationship in amorphous materials. The study of relaxation dynamics provides a very important approach to understand MGs, and is vital to understand their stability and deformation behavior and remains a core issue in the field of condensed matter physics and materials science. In recent years, with the use of more advanced research methods and the deepening of research, it was found that there exists rich dynamics covered by the extremely wide time scale and the different length scales of glassy state. Different dynamic modes not only correlate with each other but also show distinction. This article reviews recent progress in the study of relaxation dynamics in MGs, and its role in understanding and modifying material properties and optimizing material preparation.

Key words:  metallic glass      relaxation      dynamics      mechanical property      ultrastable glass     
Received:  08 June 2018     
ZTFLH:  TG139  
Fund: Supported by National Natural Science Foundation of China (Nos.11790291, 51571209 and 51461165101), National Basic Research Program of China (No.2015CB856800), National Key Research and Development Program of China (Nos.2016YFB0300501 and 2017YFB0903902), Key Research Program of Frontier Sciences (No.QYZDY-SSW-JSC017) and the Strategic Priority Research of Chinese Academy of Sciences (No.XDPB0601)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00247     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1479

Fig.1  Temperature (T) dependence of the loss modulus (E") of Y60Ni20Al20 metallic glass (MG) at 1 Hz and a heating rate of 3 K/min (The inset shows the temperature dependent E"/E"α for YxNi20Al80-x MGs (x=50, 55, 60, 65 and 70), where only the β relaxation peaks are shown. E"α represents the corresponding maximum of E" of α-relaxation peak)[87]
Fig.2  Relative enthalpy change (ΔH) against annealing time (ta) for single-step (curve A) and double-step (curves B~F) annealing (a) and Boson peak height against ta for single-step (curve I) and double-step (curves II and III) annealing (b)[106]
Fig.3  Temperature dependence of correlation functions measured for wave vector q0=2.56 ?-1 by means of X-ray photon correlation spectroscopy (XPCS) (The inset shows the temperature dependence of the corresponding shape parameter, and the line indicates the glass transition temperature (Tg), β—shape parameter)[109]
Fig.4  The flow behavior of four MGs at different temperatures (scaled by Tg): Y60Ni20Al20 (☆), Gd55Al25Cu10Co10 (△), La55Ni20Al25 (□), Zr50Cu40-Al10 (●) with a mandrel diameter of 3 mm; Zr50Cu40Al10 MG with a mandrel diameter of 6 mm are also shown (○). RT refers to room temperature[120]
Fig.5  Stress relaxation profiles of Zr44Ti11Cu10Ni10Be25 MG, from bottom to top and left to right, T=629, 619, 609, 599, 589, 579, 569, 559, 539, 519, 499, 469 and 439 K (The stress σ(t) is normalized by its initial value σ(0) at t=0; the strain applied is 0.3%. Solid lines are theoretical fits to the data)[121]
Fig.6  Schematic Arrhenius diagram concerning dynamical behaviors of MG and its high temperature liquid precursors (Γ—relaxation rate)[121]
Fig.7  Deposition rate (R) dependence of Tg (The inset is R dependence of glass crystallization temperature (Tx). The Tg and Tx with their variation ranges for the ordinary glass obtained from traditional liquid cooling are presented by the shaded magenta areas for comparison)[137]
Fig.8  Comparison of surface relaxation with bulk α and β relaxations (Tsub—the substrate temperature, STM—scanning tunneling microscope)[137]
[1] Morey G W. The Properties of Glass [M]. 2nd Ed., New York:Reinhold, 1954, Vol.124
[2] Klement W, Willens R H, Duwez P.Non-crystalline structure in solidified gold-silicon alloys[J]. Nature, 1960, 187: 869
[3] Chen H S.Thermodynamic considerations on the formation and stability of metallic glasses[J]. Acta Metall., 1974, 22: 1505
[4] Kui H W, Greer A L, Turnbull D.Formation of bulk metallic glass by fluxing[J]. Appl. Phys. Lett., 1984, 45: 615
[5] Drehman A J, Greer A L, Turnbull D.Bulk formation of a metallic glass: Pd40Ni40P20[J]. Appl. Phys. Lett., 1982, 41: 716
[6] Inoue A.Stabilization of metallic supercooled liquid and bulk amorphous alloys[J]. Acta Mater., 2000, 48: 279
[7] Inoue A, Zhang T, Masumoto T.Al-La-Ni amorphous alloys with a wide supercooled liquid region[J]. Mater. Trans. JIM, 1989, 30: 965
[8] Inoue A, Nakamura T, Nishiyama N, et al.Mg-Cu-Y bulk amorphous alloys with high tensile strength produced by a high-pressure die casting method[J]. Mater. Trans. JIM, 1992, 33: 937
[9] Inoue A, Zhang T, Nishiyama N, et al.Preparation of 16 mm diameter rod of amorphous Zr65Al7.5Ni10Cu17.5 alloy[J]. Mater. Trans. JIM, 1993, 34: 1234
[10] Inoue A.High strength bulk amorphous alloys with low critical cooling rates (overview)[J]. Mater. Trans. JIM, 1995, 36: 866
[11] Perker A, Johnson W L.A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5[J]. Appl. Phys. Lett., 1993, 63: 2342
[12] Wang W H, Dong C, Shek C H.Bulk metallic glasses[J]. Mater. Sci. Eng., 2004, R44: 45
[13] Johnson W L.Bulk glass-forming metallic alloys: Science and technology[J]. MRS Bull., 1999, 24: 42
[14] Wang W H.Roles of minor additions in formation and properties of bulk metallic glasses[J]. Prog. Mater. Sci., 2007, 52: 540
[15] Na J H, Demetriou M D, Floyd M, et al.Compositional landscape for glass formation in metal alloys[J]. Proc. Natl. Acad. Sci. USA, 2014, 111: 9031
[16] Greer A L, Ma E.Bulk metallic glasses: At the cutting edge of metals research[J]. MRS Bull., 2007, 32: 611
[17] Li Y L, Zhao S F, Liu Y H, et al.How many bulk metallic glasses are there?[J]. ACS Comb. Sci., 2017, 19: 687
[18] Ding S Y, Liu Y H, Li Y L, et al.Combinatorial development of bulk metallic glasses[J]. Nat. Mater., 2014, 13: 494
[19] Gossett E M, Scanley E B, Liu Y H, et al.Computational nanocharacterization for combinatorially developed bulk metallic glass[J]. Int. J. High Speed Electron. Syst., 2015, 24: 1520012
[20] Liu J B, Liu Y H, Gong P, et al.Combinatorial exploration of color in gold-based alloys[J]. Gold Bull., 2015, 48: 111
[21] Li J Y, Stein H S, Sliozberg K, et al.Combinatorial screening of Pd-based quaternary electrocatalysts for oxygen reduction reaction in alkaline media[J]. J. Mater. Chem., 2017, 5A: 67
[22] Inoue A, Shen B L, Koshiba H, et al.Cobalt-based bulk glassy alloy with ultrahigh strength and soft magnetic properties[J]. Nat. Mater., 2003, 2: 661
[23] Chang C T, Shen B L, Inoue A.FeNi-based bulk glassy alloys with superhigh mechanical strength and excellent soft-magnetic properties[J]. Appl. Phys. Lett., 2006, 89: 051912
[24] Liu Y H, Wang G, Pan M X, et al.Deformation behaviors and mechanism of Ni-Co-Nb-Ta bulk metallic glasses with high strength and plasticity[J]. J. Mater. Res., 2007, 22: 869
[25] Ma H, Xu J, Ma E.Mg-based bulk metallic glass composites with plasticity and high strength[J]. Appl. Phys. Lett., 2003, 83: 2793
[26] Demetriou M D, Launey M E, Garrett G, et al.A damage-tolerant glass[J]. Nat. Mater., 2011, 10: 123
[27] Wang W H.The elastic properties, elastic models and elastic perspectives of metallic glasses[J]. Prog. Mater. Sci., 2012, 57: 487
[28] Tian L, Cheng Y Q, Shan Z W, et al.Approaching the ideal elastic limit of metallic glasses[J]. Nat. Commun., 2012, 3: 609
[29] Conner R D, Dandilker R B, Struggs V, et al.Dynamic deformation behavior of tungsten-fiber/metallic-glass matrix composites[J]. Int. J. Impact Eng., 2000, 24: 435
[30] Grimberg A, Baur H, Bochsler P, et al.Solar wind neon from genesis: Implications for the lunar noble gas record[J]. Science, 2006, 314: 1133
[31] Wang W H.Bulk metallic glasses with functional physical properties[J]. Adv. Mater., 2009, 21: 4524
[32] Hasegawa R, Azuma D.Impacts of amorphous metal-based transformers on energy efficiency and environment[J]. J. Magn. Magn. Mater., 2008, 320: 2451
[33] Gutfleisch O, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821
[34] Herzer G.Modern soft magnets: Amorphous and nanocrystalline materials[J]. Acta Mater., 2013, 61: 718
[35] Nieh T G, Wadsworth J.Homogeneous deformation of bulk metallic glasses[J]. Scr. Mater., 2006, 54: 387
[36] Schroers J.The superplastic forming of bulk metallic glasses[J]. JOM, 2005, 57(5): 35
[37] Inoue A, Shen B L, Takeuchi A.Developments and applications of bulk glassy alloys in late transition metal base system[J]. Mater. Trans. JIM, 2006, 47: 1275
[38] Chu J P, Wijaya H, Wu C W, et al.Nanoimprint of gratings on a bulk metallic glass[J]. Appl. Phys. Lett., 2007, 90: 034101
[39] Tsai P H, Li T H, Hsu K T, et al.Effect of coating thickness on the cutting sharpness and durability of Zr-based metallic glass thin film coated surgical blades[J]. Thin Solid Films, 2016, 618: 36
[40] Chu J P, Yu C C, Tanatsugu Y, et al.Non-stick syringe needles: Beneficial effects of thin film metallic glass coating[J]. Sci. Rep., 2016, 6: 31847
[41] Hu Y C, Wang Y Z, Su R, et al.A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation[J]. Adv. Mater., 2016, 28: 10293
[42] Doubek G, Sekol R C, Li J Y, et al.Guided evolution of bulk metallic glass nanostructures: A platform for designing 3D electrocatalytic surfaces[J]. Adv. Mater., 2016, 28: 1940
[43] Greer A L, Cheng Y Q, Ma E.Shear bands in metallic glasses[J]. Mater. Sci. Eng., 2013, R74: 71
[44] Schroers J, Johnson W L.Ductile bulk metallic glass[J]. Phys. Rev. Lett., 2004, 93: 255506
[45] Das J, Tang M B, Kim K B, et al."Work-hardenable" ductile bulk metallic glass[J]. Phys. Rev. Lett., 2005, 94: 205501
[46] Liu Y H, Wang G, Wang R J, et al.Super plastic bulk metallic glasses at room temperature[J]. Science, 2007, 315: 1385
[47] Guo H, Yan P F, Wang Y B, et al.Tensile ductility and necking of metallic glass[J]. Nat. Mater., 2007, 6: 735
[48] Jang D, Greer J R.Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses[J]. Nat. Mater., 2010, 9: 215
[49] Wang Z T, Pan J, Li Y, et al.Densification and strain hardening of a metallic glass under tension at room temperature[J]. Phys. Rev. Lett., 2013, 111: 135504
[50] Gao M, Dong J, Huan Y, et al.Macroscopic tensile plasticity by scalarizating stress distribution in bulk metallic glass[J]. Sci. Rep., 2016, 6: 21929
[51] Qu R T, Zhang Q S, Zhang Z F.Achieving macroscopic tensile plasticity of monolithic bulk metallic glass by surface treatment[J]. Scr. Mater., 2013, 68: 845
[52] Sarac B, Schroers J.Designing tensile ductility in metallic glasses[J]. Nat. Commun., 2013, 4: 2158
[53] Qu R T, Zhao J X, Stoica M, et al.Macroscopic tensile plasticity of bulk metallic glass through designed artificial defects[J]. Mater. Sci. Eng., 2012, A534: 365
[54] Hofmann D C, Suh J Y, Wiest A, et al.Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085
[55] Pauly S, Gorantla S, Wang G, et al.Transformation-mediated ductility in CuZr-based bulk metallic glasses[J]. Nat. Mater., 2010, 9: 473
[56] Hofmann D C, Suh J Y, Wiest A, et al.Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20136
[57] Wu Y, Xiao Y H, Chen G L, et al.Bulk metallic glass composites with transformation-mediated work-hardening and ductility[J]. Adv. Mater., 2010, 22: 2770
[58] Wu Y, Zhou D Q, Song W L, et al.Ductilizing bulk metallic glass composite by tailoring stacking fault energy[J]. Phys. Rev. Lett., 2012, 109: 245506
[59] Wu Y, Wang H, Wu H H, et al.Formation of Cu-Zr-Al bulk metallic glass composites with improved tensile properties[J]. Acta Mater., 2011, 59: 2928
[60] Ichitsubo T, Matsubara E, Yamamoto T, et al.Microstructure of fragile metallic glasses inferred from ultrasound-accelerated crystallization in Pd-based metallic glasses[J]. Phys. Rev. Lett., 2005, 95: 245501
[61] Ye J C, Lu J, Liu C T, et al.Atomistic free-volume zones and inelastic deformation of metallic glasses[J]. Nat. Mater., 2010, 9: 619
[62] Dmowski W, Iwashita T, Chuang C P, et al.Elastic heterogeneity in metallic glasses[J]. Phys. Rev. Lett., 2010, 105: 205502
[63] Liu Y H, Wang D, Nakajima K, et al.Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy[J]. Phys. Rev. Lett., 2011, 106: 125504
[64] Wagner H, Bedorf D, Küchemann S, et al.Local elastic properties of a metallic glass[J]. Nat. Mater., 2011, 10: 439
[65] Zhu F, Nguyen H K, Song S X, et al.Intrinsic correlation between β-relaxation and spatial heterogeneity in a metallic glass[J]. Nat. Commun., 2016, 7: 11516
[66] Zhu F, Hirata A, Liu P, et al.Correlation between local structure order and spatial heterogeneity in a metallic glass[J]. Phys. Rev. Lett., 2017, 119: 215501
[67] Wang Z, Wen P, Huo L S, et al.Signature of viscous flow units in apparent elastic regime of metallic glasses[J]. Appl. Phys. Lett., 2012, 101: 121906
[68] Lewandowsli J J, Greer A L.Temperature rise at shear bands in metallic glasses[J]. Nat. Mater., 2006, 5: 15
[69] Guan P F, Fujita T, Hirata A, et al.Structural origins of the excellent glass forming ability of Pd40Ni40P20[J]. Phys. Rev. Lett., 2012, 108: 175501
[70] Debenedetti P G, Stillinger F H.Supercooled liquids and the glass transition[J]. Nature, 2001, 410: 259
[71] Bengtzelius U, G?tze W, Sj?lander A.Dynamics of supercooled liquids and the glass transition[J]. J. Phys., 1984, 17C: 5915
[72] G?tze W, Sj?gren L.Relaxation processes in supercooled liquids[J]. Rep. Prog. Phys., 1992, 55: 241
[73] Bartsch A, R?tzke K, Meyer A, et al.Dynamic arrest in multicomponent glass-forming alloys[J]. Phys. Rev. Lett., 2010, 104: 195901
[74] Cicerone M T, Ediger M D.Enhanced translation of probe molecules in supercooled oterphenyl: Signature of spatially heterogeneous dynamics?[J]. J. Chem. Phys., 1996, 104: 7210
[75] Ediger M D.Spatially heterogeneous dynamics in supercooled liquids[J]. Annu. Rev. Phys. Chem., 2000, 51: 99
[76] Fujara F, Geil B, Sillescu H H, et al.Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition[J]. Z. Phys., 1992, 88B: 195
[77] Ediger M D, Angell C A, Nagel S R.Supercooled liquids and glasses[J]. J. Phys. Chem., 1996, 100: 13200
[78] Biroli G, Bouchaud J-P.Critical fluctuations and breakdown of the Stokes-Einstein relation in the mode-coupling theory of glasses[J]. J. Phys.: Condens. Matter, 2007, 19: 205101
[79] Harmon J S, Demetriou M D, Johnson W L.Aneleastic to plastic transition in metallic glass-forming liquids[J]. Phys. Rev. Lett., 2007, 99: 135502
[80] Yu H B, Wang W H, Bai H Y, et al.Relating activation of shear transformation zones to beta relaxations in metallic glasses[J]. Phys. Rev., 2010, 81B: 220201
[81] Lu Z, Jiao W, Wang W H, et al.Flow unit perspective on room temperature homogeneous plastic deformation in metallic glasses[J]. Phys. Rev. Lett., 2014, 113: 045501
[82] Yu H B, Shen X, Wang Z, et al.Tensile plasticity in metallic glasses with pronounced b relaxations[J]. Phys. Rev. Lett., 2012, 108: 015504
[83] Wang Z, Sun B A, Bai H Y, et al.Evolution of hidden localized flow during glass-to-liquid transition in metallic glass[J]. Nat. Commun., 2014, 5: 5823
[84] Zhu Z G, Li Y Z, Wang Z, et al.Compositional origin of unusual β-relaxation properties in La-Ni-Al metallic glasses[J]. J. Chem. Phys., 2014, 141: 084506
[85] Wang Z, Yu H B, Wen P, et al.Pronounced slow β-relaxation in La-based bulk metallic glasses[J]. J. Phys.: Condens. Matter, 2011, 23: 142202
[86] Yu H B, Wang W H, Bai H Y, et al.The β-relaxation in metallic glasses[J]. Natl. Sci. Rev., 2014, 1: 429
[87] Luo P, Lu Z, Zhu Z G, et al.Prominent β-relaxations in yttrium based metallic glasses[J]. Appl. Phys. Lett., 2015, 106: 031907
[88] Wang Q, Zhang S T, Yang Y, et al.Unusual fast secondary relaxation in metallic glass[J]. Nat. Commun., 2015, 6: 7876
[89] Zhao L Z, Xue R J, Zhu Z G, et al.A fast dynamic mode in rare earth based glasses[J]. J. Chem. Phys., 2016, 144: 204507
[90] Wang Q, Liu J J, Ye Y F, et al.Universal secondary relaxation and unusual brittle-to-ductile transition in metallic glasses[J]. Mater. Today, 2017, 20: 293
[91] Küchemann S, Maa? R.Gamma relaxation in bulk metallic glasses[J]. Scr. Mater., 2017, 137: 5
[92] Jiang H Y, Luo P, Wen P, et al.The near constant loss dynamic mode in metallic glass[J]. J. Appl. Phys., 2016, 120: 145106
[93] Grigera T S, Martín-Mayor V, Parisi G, et al.Phonon interpretation of the 'boson peak' in supercooled liquids[J]. Nature, 2003, 422: 289
[94] Shintani H, Tanaka H.Universal link between the boson peak and transverse phonons in glass[J]. Nat. Mater., 2008, 7: 870
[95] Schober H R.Quasi-localized vibrations and phonon damping in glasses[J]. J. Non-Cryst. Solids, 2011, 357: 501
[96] Laird B B, Schober H R.Localized low-frequency vibrational modes in a simple model glass[J]. Phys. Rev. Lett., 1991, 66: 636
[97] Mitrofanov Y P, Peterlechner M, Divinski S V, et al.Impact of plastic deformation and shear band formation on the boson heat capacity peak of a bulk metallic glass[J]. Phys. Rev. Lett., 2014, 112: 135901
[98] Bünz J, Brink T, Tsuchiya K, et al.Low temperature heat capacity of a severely deformed metallic glass[J]. Phys. Rev. Lett., 2014, 112: 135501
[99] Huang B, Zhu Z G, Ge T P, et al.Hand in hand evolution of boson heat capacity anomaly and slow b-relaxation in La-based metallic glasses[J]. Acta Mater., 2016, 110: 73
[100] Angell C A.Formation of glasses from liquids and biopolymers[J]. Science, 1995, 267: 1924
[101] Sokolov A P, Rossler E, Kisliuk A, et al.Dynamics of strong and fragile glass formers: Differences and correlation with low-temperature properties[J]. Phys. Rev. Lett., 1993, 71: 2062
[102] Sokolov A P, Calemczuk R, Salce B, et al.Low-temperature anomalies in strong and fragile glass formers[J]. Phys. Rev. Lett., 1997, 78: 2405
[103] Li Y, Bai H Y, Wang W H, et al.Low-temperature specific-heat anomalies associated with the boson peak in CuZr-based bulk metallic glasses[J]. Phys. Rev., 2006, 74B: 052201
[104] Li Y, Yu P, Bai H Y.Study on the boson peak in bulk metallic glasses[J]. J. Appl. Phys., 2008, 104: 013520
[105] Yannopoulos S N, Papatheodorou G N.Critical experimental facts pertaining to models and associated universalities for low-frequency Raman scattering in inorganic glass formers[J]. Phys. Rev., 2000, 62B: 3728
[106] Luo P, Li Y Z, Bai H Y, et al.Memory effect manifested by a boson peak in metallic glass[J]. Phys. Rev. Lett., 2016, 116: 175901
[107] Ketov S V, Sun Y H, Nachum S, et al.Rejuvenation of metallic glasses by non-affine thermal strain[J]. Nature, 2015, 524: 200
[108] Li M X, Luo P, Sun Y T, et al.Significantly enhanced memory effect in metallic glass by multistep training[J]. Phys. Rev., 2017, 96B: 174204
[109] Ruta B, Chushkin Y, Monaco G, et al.Atomic-scale relaxation dynamics and aging in a metallic glass probed by X-ray photon correlation spectroscopy[J]. Phys. Rev. Lett., 2012, 109: 165701
[110] Grubel G, Zontone F.Correlation spectroscopy with coherent X-rays[J]. J. Alloys Compd., 2004, 362: 3
[111] Li Y Z, Zhao L Z, Wang C, et al.Communication: Non-monotonic evolution of dynamical heterogeneity in unfreezing process of metallic glasses[J]. J. Chem. Phys., 2015, 143: 041104
[112] Giordano V M, Ruta B.Unveiling the structural arrangements responsible for the atomic dynamics in metallic glasses during physical aging[J]. Nat. Commun., 2016, 7: 10344
[113] Evenson Z, Ruta B, Hechler S, et al.X-ray photon correlation spectroscopy reveals intermittent aging dynamics in a metallic glass[J]. Phys. Rev. Lett., 2015, 115: 175701
[114] Zanotto E D.Do cathedral glasses flow?[J]. Am. J. Phys., 1998, 66: 392
[115] Zanotto E D, Gupta P K.Do cathedral glasses flow?—Additional remarks[J]. Am. J. Phys., 1999, 67: 260
[116] Welch R C, Smith J R, Potuzak M, et al.Dynamics of glass relaxation at room temperature[J]. Phys. Rev. Lett., 2013, 110: 265901
[117] Phillips J C.Stretched exponential relaxation in molecular and electronic glasses[J]. Rep. Prog. Phys., 1996, 59: 1133
[118] Ruta B, Baldi G, Chushkin Y, et al.Revealing the fast atomic motion of network glasses[J]. Nat. Commun., 2014, 5: 3939
[119] Cangialosi D, Boucher V M, Alegría A, et al.Direct evidence of two equilibration mechanisms in glassy polymers[J]. Phys. Rev. Lett., 2013, 111: 095701
[120] Luo P, Lu Z, Li Y Z, et al.Probing the evolution of slow flow dynamics in metallic glasses[J]. Phys. Rev., 2016, 93B: 104204
[121] Luo P, Wen P, Bai H Y, et al.Relaxation decoupling in metallic glasses at low temperatures[J]. Phys. Rev. Lett., 2017, 118: 225901
[122] Luo P, Li M X, Jiang H Y, et al.Temperature dependent evolution of dynamic heterogeneity in metallic glass[J]. J. Appl. Phys., 2017, 121: 135104
[123] Fakhraai Z, Forrest J A.Measuring the surface dynamics of glassy polymers[J]. Science, 2008, 319: 600
[124] Chai Y, Salez T, McGraw J D, et al. A direct quantitative measure of surface mobility in a glassy polymer[J]. Science, 2014, 343: 994
[125] Zhu L, Brian C W, Swallen S F, et al.Surface self-diffusion of an organic glass[J]. Phys. Rev. Lett., 2011, 106: 256103
[126] Cao C R, Lu Y M, Bai H Y, et al.High surface mobility and fast surface enhanced crystallization of metallic glass[J]. Appl. Phys. Lett., 2015, 107: 141606
[127] Yang Z H, Fujii Y, Lee F K, et al.Glass transition dynamics and surface layer mobility in unentangled polystyrene films[J]. Science, 2010, 328: 1676
[128] Swallen S F, Kearns K L, Mapes M K, et al.Organic glasses with exceptional thermodynamic and kinetic stability[J]. Science, 2007, 315: 353
[129] Kearns K L, Still T, Fytas G, et al.High-modulus organic glasses prepared by physical vapor deposition[J]. Adv. Mater., 2010, 22: 39
[130] Kearns K L, Swallen S F, Ediger M D, et al.Hiking down the energy landscape: Progress toward the Kauzmann temperature via vapor deposition[J]. J. Phys. Chem., 2008, 112B: 4934
[131] Yu H B, Tylinski M, Guiseppi-Elie A, et al.Suppression of β relaxation in vapor-deposited ultrastable glasses[J]. Phys. Rev. Lett., 2015, 115: 185501
[132] Yu H B, Luo Y, Samwer K.Ultrastable metallic glass[J]. Adv. Mater., 2013, 25: 5904
[133] Aji D P B, Hirata A, Zhu F, et al. Ultrastrong and ultrastable metallic glass [J]. arXiv:1306.1575v1, 2013
[134] Guo Y L, Morozov A, Schneider D, et al.Ultrastable nanostructured polymer glasses[J]. Nat. Mater., 2012, 11: 337
[135] Singh S, Ediger M D, de Pablo J J. Ultrastable glasses from in silico vapour deposition[J]. Nat. Mater., 2013, 12: 139
[136] Chu J P, Jang J S C, Huang J C, et al. Thin film metallic glasses: Unique properties and potential applications[J]. Thin Solid Films, 2012, 520: 5097
[137] Luo P, Cao C R, Zhu F, et al.Ultrastable metallic glasses formed on cold substrates[J]. Nat. Commun., 2018, 9: 1389
[138] Chen L, Cao C R, Shi J A, et al.Fast surface dynamics of metallic glass enable superlatticelike nanostructure growth[J]. Phys. Rev. Lett., 2017, 118: 016101
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[6] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[11] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[12] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[13] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[14] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[15] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
No Suggested Reading articles found!