Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (7): 789-796    DOI: 10.11900/0412.1961.2016.00538
Orginal Article Current Issue | Archive | Adv Search |
Morphology Prediction Theory and Experimental Measurement for the Secondary Phase Particle in Steel
Jing GUO1,2,Hanjie GUO1,2(),Keming FANG1,Shengchao DUAN1,2,Xiao SHI1,2,Wensheng YANG1,2
1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing, Beijing 100083, China
Cite this article: 

Jing GUO,Hanjie GUO,Keming FANG,Shengchao DUAN,Xiao SHI,Wensheng YANG. Morphology Prediction Theory and Experimental Measurement for the Secondary Phase Particle in Steel. Acta Metall Sin, 2017, 53(7): 789-796.

Download:  HTML  PDF(1172KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

It is significant to reduce the negative effects of non-metallic inclusion on steel and to improve steel mechanical properties through controlling the morphology of the secondary phase particle including non-metallic inclusion, nitride and carbide. Compared with particles with irregular shape, globular second phase particle could reduce the stress concentration during rolling and heat treatment process obviously and lower its harmfulness to steel toughness. A theoretical model to predict the morphology of the secondary phase particle in steel has been established by introducing a dimensionless Jackson α factor, and the morphology of the secondary phase particle is determined by its dissolved entropy, growth direction and temperature or undercooling. Non-aqueous solution electrolysis extraction and room temperature organic (RTO) technique were applied to detect the 3D morphology of the secondary phase particle and its inner morphology combining with SEM. The morphologies of particles observed in four different types of steels are in good agreement with the theoretical predictions. Theoretical predictions and experimental observation were both confirmed that the secondary phase particle is faceted in morphology when its Jackson α factor is more than 3 and non-faceted when its Jackson α factor less than 2.

Key words:  secondary phase particle      morphology      Jackson α factor      dissolved entropy      non-aqueous solution electrolysis      RTO technique     
Received:  28 November 2016     
Fund: Supported by National Natural Science Foundation of Steel Joint Research Funds of China (No.U1560203) and Fundamental Research Fund for the Central Universities (No.FRF-TP-16-079A1)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00538     OR     https://www.ams.org.cn/EN/Y2017/V53/I7/789

Fig.1  Relations between crystal/melt interface relative energy and fraction of crystal lattice atom (X) with different Jackson α factors (ΔF—crystal/melt interface free energy, N—the number of crystal lattice on the crystal/melt interface, k—Boltzman constant, T—temperature)
Fig.2  Schematic of apparatus for non-aqueous solution electrolysis (1—specimen, 2—stainless steel sheet, 3—thermometer, 4—solution, 5—beaker, 6—holder, DC—direct current)
Fig.3  Schematic of steps wrapping and cutting the extracted secondary phase particle by room temperature organic (RTO) technique
Steel grade C Si Mn P S Als Ti Cr Ni Mo Co
A 0.04 0.02 0.15 0.01 0.005 0.04 0.06 - - - -
B 0.05 0.50 1.10 0.01 0.008 - - 18.22 8.10 - -
C 0.03 0.29 0.13 0.014 0.002 5.20 0.12 24.20 0.12 - -
D 1.14 0.50 0.60 0.03 0.007 - 0.0049 4.70 - 9.30 8.10
Table 1  Tested steel grades and compositions
Fig.4  Morphologies of the secondary phase particles in steel B after extration by non-aqueous solution electrolysis (a) and after cutting by RTO technique (b)
Particle type Crystalline structure ξ(hkl) Tm/ K ΔHm/ (kJmol-1) α
Al2O3 (corundum) hcp 0.5~1.0 2327 118.41 3.06~6.12
AlN (S-G)* hcp 0.5~1.0 4349 189.61 2.62~5.24
SiO2 (quartz) Tetragonal 0.5~1.0 1996 9.58 0.29~0.58
CaO (lime) fcc 0.5~1.0 2845 28.50 1.18~3.36
CaF2 cubic 0.5~1.0 1691 29.71 1.06~2.11
FeO fcc 0.5~1.0 1650 24.06 0.43~0.86
MgO fcc 0.5~1.0 3098 77.40 1.51~3.01
MnO fcc 0.5~1.0 2058 54.39 1.59~3.18
MnS fcc 0.5~1.0 1803 26.11 0.44~0.87
NbO fcc 0.5~1.0 2218 54.39 1.48~2.95
Nb2O3 0.5~1.0 1785 102.93 3.47~6.94
NiO fcc 0.5~1.0 2230 50.68 1.37~2.73
TiC fcc 0.5~1.0 3290 71.13 1.38~2.76
TiN fcc 0.5~1.0 2023 54.39 3.15~6.29
TiO 0.5~1.0 2112 110.46 4.06~8.11
Ti2O3 0.5~1.0 2047 138.07 1.88~3.76
Ti3O5 0.5~1.0 2143 66.94 4.17~8.33
TiO2 0.5~1.0 943 66.27 1.78~3.55
V2O5 0.5~1.0 2950 87.03 3.15~6.29
ZrO2 0.5~1.0 2023 54.39 4.06~8.11
MgAl2O4 - 0.5~1.0 2381 160.65 4.06~8.12
CaSiO3 - 0.5~1.0 1813 (1817) 57.00 (56.07) 1.85~3.70
CaAl4O7 - 0.5~1.0 2038 128.4 3.79~7.57
CaAl2O4 0.5~1.0 1877 55.0 1.76~3.51
Ca12Al14O33 0.5~1.0 1709 432.0 15.19~30.38
Ca3Al2O6 0.5~1.0 1814 72.0 5.59~11.18
Table 2  Jackson α factor of some typical secondary phase particles in steel[22,23]
Fig.5  Typical morphologies of Al2O3 with α=3.06~6.12 (a, b), MgAl2O4 with α=4.06~8.12 (c, d) and TiN with α=3.15~6.29 (e, f) inclusions in steel A

(a) polyhedral (b) spheroidal (c) polyhedral (d) spheroidal (e) cubic (f) gear-like

Fig.6  Morphologies of typical inclusion after non-aqueous solution electrolysis

(a, b) faceted Al2O3 from steel A under different magnifications (c, d) spherical or spheroidal CaO-SiO2-MnO from steel B under different magnifications

Fig.7  Inner morphologies of the secondary phase particle after being cut using RTO technique

(a, b) polyhedral Al2O3 from steel A under different magnifications, no precipitates (c, d) spherical or spheroidal CaO-SiO2-MnO from steel B under different magnifications

Fig.8  Morphologies of typical nitrides in steel C (a~c) and carbides in steel D (d~f)

(a) TiN, cubic (b) AlN, polyhedral (c) AlN, spheroid (d) carbide, faceted (e) carbide, rod-like (f) carbide, needle-like

[1] Záhumensky P, Merwin M.Evolution of artificial defects from slab to rolled products[J]. J. Mater. Process. Technol., 2008, 196: 266
[2] Yu H L, Bi H Y, Liu X H, et al.Behavior of inclusions with weak adhesion to strip matrix during rolling using FEM[J]. J. Mater. Process. Technol., 2009, 209: 4274
[3] Jiang L Z, Cui K, H?nninen H.Effects of the composition, shape factor and area fraction of sulfide inclusions on the machinability of re-sulfurized free-machining steel[J]. J. Mater. Process. Technol., 1996, 58: 160
[4] Shao X J, Wang X H, Jiang M, et al.In situ observation of MnS inclusion behavior in resulfurized Free cutting steel during heating[J]. Acta Metall. Sin., 2011, 47: 1210
[4] (邵肖静, 王新华, 姜敏等. 加热过程中硫系易切削钢中MnS夹杂物行为的动态原位观察. 金属学报,2011, 47: 1210)
[5] Kim S H, Kim H, Kim N J.Brittle intermetallic compound makes ultrastrong low-density steel with large ductility[J]. Nature, 2015, 518: 77
[6] Jackson K A.Growth and Perfection of Crystals[M]. New York: John Wiley and Sons Inc., 1958: 319
[7] Jackson K A.Liquid Metals and Solidification[M]. Ohio, Metals Park: ASM, 1958: 174
[8] Li D, Herlach D M.Direct measurements of free crystal growth in deeply undercooled melts of semiconducting materials[J]. Phys. Rev. Lett., 1996, 77: 1801
[9] Lu Y P, Yang G C, Liu F, et al.The transition of alpha-Ni phase morphology in highly undercooled eutectic Ni78.6Si21.4 alloy[J]. Europhys. Lett., 2006, 74: 281
[10] Lipton J, Kurz W, Trivedi R.Rapid dendrite growth in undercooled alloys[J]. Acta Metall., 1987, 35: 957
[11] Lofgren G.An experimental study of plagioclase crystal morphology; isothermal crystallization[J]. Am. J. Sci., 1974, 274: 243
[12] Kirkpatrick R J.Crystal growth from the melt: A review[J]. Am. Mineral., 1975, 60: 798
[13] Heulens J, Blanpain B, Moelans N.Analysis of the isothermal crystallization of CaSiO3 in a CaO-Al2O3-SiO2 melt through in situ observations[J]. J. Eur. Ceram. Soc., 2011, 31: 1873
[14] Li J L, Shu Q F, Chou K.Effect of agitation on crystallization behavior of CaO-Al2O3-SiO2-Na2O-CaF2 mold fluxes with varying basicity[J]. Metall. Mater. Trans., 2015, 46B: 1555
[15] Hill A.Entropy production as the selection rule between different growth morphologies[J]. Nature, 1990, 348: 426
[16] Berge B, Faucheux L, Schwab K, et al.Faceted crystal growth in two dimensions[J]. Nature, 1991, 350: 322
[17] Van Ende M A, Guo M X, Proost J, et al. Formation and morphology of Al2O3 inclusions at the onset of liquid Fe deoxidation by Al addition[J]. ISIJ Int., 2011, 51: 27
[18] Ye Z C, Wang S Y, Wang X C.Study of inclusions in IF steel[J]. Acta Metall. Sin., 1999, 35: 1057
[18] (叶仲超, 王石杨, 汪晓川. IF钢中的夹杂物[J]. 金属学报, 1999, 35: 1057)
[19] Guo J, Seo M D, Shi C B, et al.Control of crystal morphology for mold flux during high-aluminum AHSS continuous casting process[J]. Metall. Mater. Trans., 2016, 47B: 2211
[20] Fang K M, Wang G C.Study on non-metallic inclusions in steel from characterization to denaturation[J]. J. Chin. Rare Earth Soc., 2006, 24(Spec. Issue): 439
[20] (方克明, 王国承. 钢中的夹杂物研究从表征到改性[J]. 中国稀土学报, 2006, 24(专辑): 439)
[21] Jackson K A, Uhlmann D R, Hunt J D.On the nature of crystal growth from the melt[J]. J. Cryst. Growth, 1967, 1: 1
[22] Barin I, Knacke O.Thermochemical Properties of Inorganic Substances[M]. Berlin Heidelberg: Springer-Verlag, 1973: 73
[23] Barin I, Knacke O, Kubaschewski O.Thermochemical Properties of Inorganic Substances: Supplement[M]. Berlin Heidelberg: Springer-Verlag, 1977: 49
[24] Kim H S, Lee H G, Oh K S.MnS precipitation in association with manganese silicate inclusions in Si/Mn deoxidized steel[J]. Metall. Mater. Trans., 2001, 32A: 1519
[25] Wang K P, Jiang M, Wang X H, et al.Formation mechanism of SiO2-type inclusions in Si-Mn-killed steel wires containing limited aluminum content[J]. Metall. Mater. Trans., 2015, 46B: 2198
[26] Luo Y W, Guo H J, Chen X C.Effect of nitrogen on the microstructure of AISI M42 high-speed steel [A]. AISTech - Iron and Steel Technology Conference Proceedings[C]. Pittsburgh, USA: 2016: 1123
[27] Ning A G, Guo H J, Chen X C, et al.Precipitation behaviors and strengthening of carbides in H13 steel during annealing[J]. Mater. Trans., 2015, 56: 581
[1] LIU Jihao, ZHOU Jian, WU Huibin, MA Dangshen, XU Huixia, MA Zhijun. Segregation and Solidification Mechanism in Spray-Formed M3 High-Speed Steel[J]. 金属学报, 2023, 59(5): 599-610.
[2] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[3] ZHANG Xinfang, YAN Longge. Regulating the Non-Metallic Inclusions by Pulsed Electric Current in Molten Metal[J]. 金属学报, 2020, 56(3): 257-277.
[4] LIU Haixia, CHEN Jinhao, CHEN Jie, LIU Guanglei. Characteristics of Waterjet Cavitation Erosion of 304 Stainless Steel After Corrosion in NaCl Solution[J]. 金属学报, 2020, 56(10): 1377-1385.
[5] SONG Xuexin, HUANG Songpeng, WANG Chuan, WANG Zhenyao. The Initial Corrosion Behavior of Carbon Steel Exposed to the Coastal-Industrial Atmosphere in Hongyanhe[J]. 金属学报, 2020, 56(10): 1355-1365.
[6] Wensheng XU, Wenzheng ZHANG. An Investigation of the Crystallography of Pearlites Nucleated on the Proeutectoid Cementite[J]. 金属学报, 2019, 55(4): 496-510.
[7] Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel[J]. 金属学报, 2019, 55(4): 427-435.
[8] JIN Chenri, YANG Suyuan, DENG Xueyuan, WANG Yangwei, CHENG Xingwang. Effect of Nano-Crystallization on Dynamic Compressive Property of Zr-Based Amorphous Alloy[J]. 金属学报, 2019, 55(12): 1561-1568.
[9] YANG Gaolin, LIN Xin, LU Xiangang. Crystallization Morphology and Evolution Mechanism of Laser Multiple Remelting of Zr55Cu30Al10Ni5 Metallic Glass[J]. 金属学报, 2019, 55(12): 1544-1550.
[10] CAO Lihua, CHEN Yinbo, SHI Qiyuan, YUAN Jie, LIU Zhiquan. Effects of Alloy Elements on the Interfacial Microstructure and Shear Strength of Sn-Ag-Cu Solder[J]. 金属学报, 2019, 55(12): 1606-1614.
[11] Baogang WANG, Hongliang YI, Guodong WANG, Zhichao LUO, Mingxin HUANG. Reconstruction of 3D Morphology of TiB2 in In Situ Fe Matrix Composites[J]. 金属学报, 2019, 55(1): 133-140.
[12] Siqian BAO, Bingbing LIU, Gang ZHAO, Yang XU, Shanshan KE, Xiao HU, Lei LIU. Three-Dimensional Morphologies of Abnormally Grown Goss Oriented Grains in Hi-B Steel During Secondary Recrystallization Annealing[J]. 金属学报, 2018, 54(6): 877-885.
[13] Huijun KANG, Jinling LI, Tongmin WANG, Jingjie GUO. Growth Behavior of Primary Intermetallic Phases and Mechanical Properties for Directionally Solidified Al-Mn-Be Alloy[J]. 金属学报, 2018, 54(5): 809-823.
[14] Min LI, Jing LIU, Qingwei JIANG. Effect of Annealing Temperature on Tensile Fracture Behavior of ARB-Cu at Room Temperature[J]. 金属学报, 2017, 53(8): 1001-1010.
[15] Yang XU,Siqian BAO,Gang ZHAO,Xiangbin HUANG,Rusheng HUANG,Bingbing LIU,Nana SONG. Three-Dimensional Morphologies of Different Oriented Grains in Hi-B Steel Formed During Early Stage of Secondary Recrystallization Annealing[J]. 金属学报, 2017, 53(5): 539-548.
No Suggested Reading articles found!