Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (6): 726-732    DOI: 10.11900/0412.1961.2016.00402
Orginal Article Current Issue | Archive | Adv Search |
Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets
Shaoting GONG,Chengbao JIANG,Tianli ZHANG()
School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Cite this article: 

Shaoting GONG, Chengbao JIANG, Tianli ZHANG. Effect of Fe on Microstructure and Coercivity of SmCo-Based Magnets. Acta Metall Sin, 2017, 53(6): 726-732.

Download:  HTML  PDF(1989KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

High-temperature permanent magnets have an important application in the aerospace and other high-tech fields, among which 2:17-type SmCo magnets have become the first choice for high-temperature permanent magnets due to the strong magnetic anisotropy and high Curie temperature. Although there are studies on the effect of Fe on the remanence and coercivity, the role that Fe plays on coercivity mechanism of SmCo magnets is still unclear. In this work, Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10~0.16, z=6.90 and 7.40) magnets are prepared and the magnetic properties under different temperatures are investigated. The magnets with an intrinsic coercivity of 603.99 kA/m and a maximum energy product of 87.30 kJ/m3 at 500 ℃ are obtained. It is revealed that at room temperature the coercivity of the magnets increases with increasing Fe content, however, at 500 ℃ the coercivity shows an opposite dependency on Fe content. Moreover, the effect of Fe on coercivity is more obvious at low z value. The phase structure and composition analyses were characterized by XRD and TEM. The results show that with the increase of Fe content, the size of the 2:17R cell phase increases, the volume ratio of cell boundary 1:5H phase decreases, and furthermore, both Fe content in the 2:17R phase and Cu content in the 1:5H phase increase. The variations of Fe and Cu contents in both phases lead to the change of the domain wall energy difference. With the increase of Cu content of 1:5H phase, the domain wall energy of 1:5H phase (γ1:5) drops faster at room temperature, the coercivity is determined by γ2:17-γ1:5, so the coercivity increases with increasing Fe content. While at 500 ℃, due to γ1:5 at its Curie temperature, the coercivity is mainly determined by the domain wall energy of 2:17R phase (γ2:17), which decreases with increasing Fe content. The increase of Fe content at the low z value results in a smaller growth of cell size, which leads to a more significant change in coercivity.

Key words:  SmCo magnet      Fe content      coercivity      microstructure     
Received:  08 September 2016     
ZTFLH:     
Fund: Supported by National Natural Science Foundation of China (No.51471016) and Natural Science Foundation of Beijing (No.2151002)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00402     OR     https://www.ams.org.cn/EN/Y2017/V53/I6/726

Fig.1  Demagnetization curves of Sm(CobalFexCu0.08~0.10-Zr0.03~0.033)z (x=0.16, z=6.90) magnets under different temperatures (RT—room temperature)
Fig.2  Temperature dependence of intrinsic coercivity of Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z magnets with x=0.10~0.16 and z=6.90 (a), z=7.40 (b)
Fig.3  XRD spectra of Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10 and 0.16, z=6.90 and 7.40) magnets
Temperature Hcj / (kAm-1) Br / T (BH)m / (kJm-3)
RT 2581.49 0.91 168.39
500 ℃ 603.99 0.70 87.30
Table 1  Permanent magnetic properties of Sm(CobalFex-Cu0.08~0.10Zr0.03~0.033)z (x=0.16, z=6.90) magnets at RT and 500 ℃
Fig.4  Peak-differentiation-imitating XRD profiles of Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10 and 0.16, z=6.90 and 7.40) magnets
(a) x=0.10, z=6.90 (b) x=0.16, z=6.90 (c) x=0.10, z=7.40 (d) x=0.16, z=7.40
Fig.5  TEM images of Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10 and 0.16, z=6.90 and 7.40) magnets
(a) x=0.10, z=6.90 (b) x=0.16, z=6.90 (c) x=0.10, z=7.40 (d) x=0.16, z=7.40
Fig.6  Sm, Fe, Cu concentrations in 2:17R and 1:5H phases of Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10 and 0.16, z=6.90 and 7.40) magnets
(a) x=0.10, z=6.90 (b) x=0.16, z=6.90 (c) x=0.10, z=7.40 (d) x=0.16, z=7.40
Atomic fraction Cell length
nm
Cell width
nm
Mass fraction
of 1:5H phase
Volume fraction
of 1:5H phase
x=0.10, z=6.90 82.83 63.69 0.23 0.38
x=0.16, z=6.90 109.96 77.05 0.15 0.29
x=0.10, z=7.40 105.08 85.76 0.15 0.32
x=0.16, z=7.40 185.95 144.46 0.05 0.19
Table 2  1:5H phase mass fraction calculated from the XRD data, cell size and 1:5H phase volume fractions calculated from TEM images of Sm(CobalFexCu0.08~0.10Zr0.03~0.033)z (x=0.10 and 0.16, z=6.90 and 7.40) magnets
[1] Gutfleisch O, Müller K H, Khlopkov K, et al.Evolution of magnetic domain structures and coercivity in high-performance SmCo 2: 17-type permanent magnets[J]. Acta Mater., 2006, 54: 997
[2] Gutfleisch O, Willard M A, Brück E, et al.Magnetic materials and devices for the 21st century: Stronger, lighter, and more energy efficient[J]. Adv. Mater., 2011, 23: 821
[3] Horiuchi Y, Hagiwara M, Okamoto K, et al.Effects of solution treated temperature on the structural and magnetic properties of iron-rich Sm(CoFeCuZr)z sintered magnet[J]. IEEE Trans. Magn., 2013, 49: 3221
[4] Zhang T L, Liu H Y, Liu J H, et al.2:17-type SmCo quasi-single-crystal high temperature magnets[J]. Appl. Phys. Lett., 2015, 106: 162403
[5] Wang Q, Jiang C B.Study on SmCo permanent magnets under 350 ℃ moderate temperatures[J]. Acta Metall. Sin., 2011, 47: 1605
[5] (王倩, 蒋成保. 350 ℃中温段SmCo永磁材料的研究[J]. 金属学报, 2011, 47: 1605)
[6] Guo Z H, Li W.Room- and high-temperature magnetic properties of Sm(CobalFexCu0.088Zr0.025)7.5 (x=0~0.30) sintered magnets[J]. Acta Metall. Sin., 2002, 38: 866
[6] (郭朝晖, 李卫. Sm(CobalFexCu0.088Zr0.025)7.5 (x=0~0.30)烧结永磁体的磁性及其高温特性[J]. 金属学报, 2002, 38: 866)
[7] Liu J F, Ding Y, Zhang Y, et al.New rare-earth permanent magnets with an intrinsic coercivity of 10 kOe at 500 ℃[J]. J. Appl. Phys., 1999, 85: 5660
[8] Panagiotopoulos I, Matthias T, Niarchos D, et al. Melt-spun Sm (Co, Fe, Cu, Zr)z magnets for high-temperature applications [J]. J. Magn. Magn. Mater., 2002, 242-245: 1304
[9] Zhang T L, Liu H Y, Ma Z H, et al.Single crystal growth and magnetic properties of 2:17-type SmCo magnets[J]. J. Alloys Compd., 2015, 637: 253
[10] Wang G J, Zheng L, Jiang C B.Magnetic domain structure and temperature dependence of coercivity in Sm (CobalFe0.1Cu0.1Zr0.033)z (z=6.8, 7.4) magnets[J]. J. Magn. Magn. Mater., 2013, 343: 173
[11] Li L Y, Yi J H, Huang B Y, et al.Microstructure and magnetic properties of Sm2Co17-based high temperature permanent magnets[J]. Acta Metall. Sin., 2005, 41: 791
[11] (李丽娅, 易健宏, 黄伯云等. Sm2Co17基高温稀土永磁材料的显微结构与磁性[J]. 金属学报, 2005, 41: 791)
[12] Kronmüller H, Goll D.Micromagnetic analysis of pinning-hardened nanostructured, nanocrystalline Sm2Co17 based alloys[J]. Scr. Mater., 2002, 47: 545
[13] Xiong X Y, Ohkubo T, Koyama T, et al.The microstructure of sintered Sm(Co0.72Fe0.20Cu0.055Zr0.025)7.5 permanent magnet studied by atom probe[J]. Acta Mater., 2004, 52: 737
[14] Liu J F, Zhang Y, Hadjipanayis G C.High-temperature magnetic properties and microstructural analysis of Sm(Co, Fe, Cu, Zr)z permanent magnets[J]. J. Magn. Magn. Mater., 1999, 202: 69
[15] Wang G J, Jiang C B.The coercivity and domain structure of Sm(CobalFe0.1CuxZr0.033)6.9 (x= 0.07, 0.10, 0.13) high temperature permanent magnets[J]. J. Appl. Phys., 2012, 112: 033909
[16] Liu J F, Chui T, Dimitrov D, et al.Abnormal temperature dependence of intrinsic coercivity in Sm(Co, Fe, Cu, Zr)z powder materials[J]. Appl. Phys. Lett., 1998, 73: 3007
[17] Tang W, Zhang Y, Gabay A M, et al. Anomalous temperature dependence of coercivity in rare earth cobalt magnets [J]. J. Magn. Magn. Mater., 2002, 242-245: 1335
[18] Tang W, Zhang Y, Hadjipanayis G C, et al.Influence of Zr and Cu content on the microstructure and coercivity in Sm(CobalFe0.1CuyZrx)8.5 magnets[J]. J. Appl. Phys., 2000, 87: 5308
[19] Chen C H, Walmer M S, Walmer M H.Sm2(Co, Fe, Cu, Zr)17 magnets for use at temperature ? 400 ℃[J]. J. Appl. Phys., 1998, 83: 6706
[20] Guo Z H, Pan W, Li W.Sm(Co, Fe, Cu, Zr)z sintered magnets with a maximum operating temperature of 500 ℃[J]. J. Magn. Magn. Mater., 2006, 303: e396
[21] Liu J F, Ding Y, Hadjipanayis G C.Effect of iron on the high temperature magnetic properties and microstructure of Sm(Co, Fe, Cu, Zr)z permanent magnets[J]. J. Appl. Phys., 1999, 85: 1670
[22] Wang F Z.Modern Methods for Material Analysis [M]. Beijing: Beijing Institute of Technology Press, 2006: 74
[22] (王富耻. 材料现代分析测试方法 [M]. 北京: 北京理工大学出版社, 2006: 74)
[23] Sun T D.A model on the coercivity of the hardened 2-17 rare earth-cobalt permanent magnets[J]. J. Appl. Phys., 1981, 52: 2532
[24] Lectard E, Allibert C H, Ballou R.Saturation magnetization and anisotropy fields in the Sm(Co1-xCux)5 phases[J]. J. Appl. Phys., 1994, 75: 6277
[25] Miyazaki T, Takahashi M, Yang X B, et al.Formation of metastable compounds and magnetic properties in rapidly quenched (Fe1-xCox)5Sm and (Fe1-xCox)7Sm2 alloy systems[J]. J. Appl. Phys., 1988, 64: 5974
[26] Goll D, Kronmüller H, Stadelmaier H H.Micromagnetism and the microstructure of high-temperature permanent magnets[J]. J. Appl. Phys., 2004, 96: 6534
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!