Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (6): 703-708    DOI: 10.11900/0412.1961.2016.00286
Orginal Article Current Issue | Archive | Adv Search |
Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature
Jinxia YANG1(),Futao XU1,Donglin ZHOU2,Yuan SUN1,Xingyu HOU1,Chuanyong CUI1
1 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2 Harbin Dongan Engine Group Corporation LTD., Harbin 150066, China
Cite this article: 

Jinxia YANG,Futao XU,Donglin ZHOU,Yuan SUN,Xingyu HOU,Chuanyong CUI. Effects of Re-Melting Processes on the Tensile Properties of K452 Alloy at High Temperature. Acta Metall Sin, 2017, 53(6): 703-708.

Download:  HTML  PDF(3849KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

K452 alloy is a nickel-based cast superalloy having the good tensile properties at high temperature and excellent corrosion resistance. It has been applied as a blade material of engines when environmental temperature is not above 950 ℃. It is found that the tensile properties of the alloy have become more scattered and unstable although its chemical compositions are not changed. Hence, the tensile properties of the alloy were studied in order to increase its stability at high temperature and improve its applied properties. Tensile specimens were prepared using the different re-melting processes. Tensile tests were done at 900 ℃. When the pouring temperature was 1430 ℃, tensile properties were not only lower than expected, but also had great degree of dispersion, i.e., the vales of ultimate strengths changed in the range of 410 MPa and 510 MPa, and the elongations changed in the range of 3.5% and 22.0%, the average contents of O and N were the highest among three tested conditions. The highest N content was 0.0028%. And the shrinkage area was higher than those in other two re-melting processes. When the pouring temperature was 1500 ℃, the tensile properties were improved, and their changing scopes became small, the average contents of O and N decreased, the shrinkage area decreased. When the refining temperature was 1590 ℃ and the holding time was 5 min, both average contents of O and N were decreased greatly, the shrinkage was not seen in the fracture surfaces. And the tensile properties were improved. Furthermore, their changing scopes were very small.

Key words:  superalloy      tensile property      shrinkage     
Received:  05 July 2016     
Fund: Supported by National Natural Science Foundation of China (No.11332010)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00286     OR     https://www.ams.org.cn/EN/Y2017/V53/I6/703

Process No. T1 / ℃ τ / min T2 / ℃
1 1500 3 1430
2 1500 3 1500
3 1590 5 1500
Table 1  Parameters of re-melting processes
Fig.1  Fractographs of sample No.5 using process No.1
(a) total morphology (b) single pore (c) shrinkage in fractured field
Sample No. wO / % wN / % T / ℃ Rm / MPa A / %
1 - - 901 455 4.0
2 0.0019 0.0028 898 410 Brittle fracture
3 0.0015 0.0018 903 485 4.0
4 - - 900 495 12.0
5 0.0017 0.0015 902 455 3.5
6 - - 899 450 19.0
7 0.0011 0.0013 903 510 20.0
8 0.0010 0.0009 899 495 22.0
9 - - 900 480 8.4
10 - - 898 490 6.5
Average 0.00141 0.00171 900.4 471.5 11.04
Changed scope 0.0010~0.0019 0.0009~0.0028 898~903 410~510 3.5~22.0
Table 2  Contents of O, N and tensile properties of K452 alloy using re-melting process No.1
Fig.2  Fractographs of sample No.7 using process No.1
(a) whole fracture morphology (b) outer area (c) inner area
Fig.3  Fractographs of sample No.1 using process No.2
(a) whole fracture morphology (b) outer area (c) inner area
Sample No. wO / % wN / % T / ℃ Rm / MPa A / %
1 0.0011 0.0009 900 490 10.0
2 0.0007 0.0009 897 470 20.0
3 0.0011 0.0006 903 490 17.6
4 0.0009 0.0009 902 530 16.5
5 0.0012 0.0013 899 505 12.0
6 0.0010 0.0009 903 495 17.6
Average 0.0010 0.00091 900.7 495 15.61
Changed scope 0.0007~0.0012 0.0006~0.0013 897~903 470~530 10.0~20.0
Table 3  Contents of O, N and tensile properties of K452 alloy using re-melting process No.2
Sample No. wO / % wN / % T / ℃ Rm / MPa A / %
1 0.0007 0.0006 902 500 23.0
2 0.0005 0.0006 899 530 23.5
3 0.0005 0.0004 903 500 24.0
4 0.0008 0.0006 901 490 23.0
5 0.0009 0.0004 902 490 18.0
6 0.0005 0.0006 900 500 19.5
Average 0.00065 0.0005 901.3 501.6 21.67
Changed scope 0.0005~0.0009 0.0004~0.0006 899~903 490~530 18~24
Table 4  Contents of O, N and tensile properties of K452 alloy using re-melting process No.3
Fig.4  Fractographs of sample No.4 using process No.3
(a) whole fracture morphology (b) outer area (c) inner area
[1] Guo J T, Yuan C. China Superalloys Handbook, Book 3: Cast Superalloy et al [M]. Beijing: China Standard Press, 2012: 222
[1] (郭建亭, 袁超. 中国高温合金手册, 下卷: 铸造高温合金等 [M]. 北京: 中国标准出版社, 2012: 222)
[2] Guo J T.Materials Science and Engineering for Superalloys, Book 3: Materals and Engineering Application for Superalloy [M]. Beijing: Science Press, 2010: 328
[2] (郭建亭. 高温合金材料学, 下册: 高温合金材料与工程应用 [M]. 北京: 科学出版社, 2010: 328)
[3] Qin X Z.Microstructure and property stability of cast Ni-base superalloys K452 and K446 during long-term thermal exposure [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
[3] (秦学智. 铸造高温合金K452和K446在长期时效期间的组织和性能的演变 [D]. 沈阳: 中国科学院金属研究所, 2008)
[4] Pope D P, Ezz S S.Mechanical properties of Ni3Al and nickel-base alloys with high volume fraction of γ'[J]. Int. Met. Rev., 1984, 29: 136
[5] Sieb?rger D, Knake H, Glatzel U.Temperature dependence of the elastic moduli of the nickel-base superalloy CMSX-4 and its isolated phases[J]. Mater. Sci. Eng., 2001, A298: 26
[6] Copley S M, Kear B H.A dynamic theory of coherent precipitation hardening with application to nickel-base superalloys[J]. Trans. Metall. Soc. AIME, 1967, 239: 984
[7] Bettge D, ?sterle W, Ziebs J.Temperature dependence of yield strength and elongation of the nickel-base superalloy IN 738 LC and the corresponding microstructural evolution[J]. Z. Metallkd., 1995, 86: 190
[8] Chu Z K.Investigation of mechanical property and deformation mechanism of DZ951 alloy [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2008
[8] (储昭贶. DZ951合金力学性能及变形机制的研究 [D]. 沈阳: 中国科学院金属研究所, 2008)
[9] He L Z, Zheng Q, Sun X F, et al.Low ductility at intermediate temperature of Ni-base superalloy M963[J]. Mater. Sci. Eng., 2004, A380: 340
[10] Milligan W W, Antolovich S D.Yielding and deformation behavior of the single crystal superalloy PWA 1480[J]. Metall. Trans., 1987, 18A: 85
[11] Wang J, Zhou L Z, Sheng L Y, et al.The microstructure evolution and its effect on the mechanical properties of a hot-corrosion resistant Ni-based superalloy during long-term thermal exposure[J]. Mater. Des., 2012, 39: 55
[12] Qin X Z, Guo J T, Yuan C, et al.Precipitation and thermal instability of M23C6 carbide in cast Ni-base superalloy K452[J]. Mater. Lett., 2008, 62: 258
[13] Qin X Z, Guo J T, Yuan C, et al.Decomposition of primary MC carbide and its effects on the fracture behaviors of a cast Ni-base superalloy[J]. Mater. Sci. Eng., 2008, A485: 74
[14] Qin X Z, Guo J T, Yuan C, et al.Thermal stability of primary carbides and carbonitrides in two cast Ni-base superalloys[J]. Mater. Lett., 2008, 62: 2275
[15] Yang J X, Zheng Q, Ji M Q, et al.Effects of refining processes on metallurgical defects and room temperature' tensile properties of superalloy IN792[J]. Rare Met. Mater. Eng., 2012, 41: 692
[15] (杨金侠, 郑启, 纪曼青等. 精炼工艺对IN792合金冶金缺陷和拉伸性能的影响[J]. 稀有金属材料与工程, 2012, 41: 692
[16] Yang J X, Zheng Q, Sang Z R, et al.Effects of melting treatments on the mechanical properties of reverted DZ40M alloy[J]. Acta Metall. Sin., 2010, 46: 1511
[16] (杨金侠, 郑启, 桑志茹等. 熔体处理对DZ40M返回合金力学性能的影响[J]. 金属学报, 2010, 46: 1511)
[17] Niu J P.Investigation on super refining Ni-based superalloy by vaccum induction melting [D]. Shenyang: Institute of Metal Research, Chinese Academy of Sciences, 2002
[17] (牛建平. 镍基高温合金超纯净真空感应熔炼工艺的研究 [D]. 沈阳: 中国科学院金属研究所, 2002)
[18] Niu J P, Yang K N, Jin T, et al.Desulphurization during VIM refining Ni-base superalloy[J]. Acta Metall. Sin., 2001, 37: 499
[18] (牛建平, 杨克努, 金涛等. Ni基高温合金的真空冶炼脱硫[J]. 金属学报, 2001, 37: 499)
[19] Niu J P, Yang K N, Jin T, et al.Denitrogenation during VIM refining Ni-base superalloy[J]. Acta Metall. Sin., 2001, 37: 943
[19] (牛建平, 杨克努, 金涛等. 真空感应熔炼超纯净镍基高温合金脱氮的研究[J]. 金属学报, 2001, 37: 943)
[20] Yuan C, Guo J T, Wang T L, et al.Effect of revert proportion on microstructure and property of a cast cobalt-base superalloy K640S[J]. Acta Metall. Sin., 2000, 36: 961
[20] (袁超, 郭建亭, 王铁利等. 返回料添加比例对铸造钴基高温合金K640S组织与性能的影响[J]. 金属学报, 2000, 36: 961)
[21] Li C.Metallurgy Mechanism [M]. Harbin: Harbin Institute of Technology Press, 1996: 196
[21] (李超. 金属学原理 [M]. 哈尔滨: 哈尔滨工业大学出版社,1996: 196)
[22] Yang J X, Sun Y, Jin T, et al.Microstructure and mechanical properties of a Ni-based superalloy with refined grains[J]. Acta Metall. Sin., 2014, 50: 839
[22] (杨金侠, 孙元, 金涛等. 一种细晶铸造镍基高温合金的组织与力学性能[J]. 金属学报, 2014, 50: 839)
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[3] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[7] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[8] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[9] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[10] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[11] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[12] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[13] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[14] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[15] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
No Suggested Reading articles found!