Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (6): 648-656    DOI: 10.11900/0412.1961.2016.00437
Orginal Article Current Issue | Archive | Adv Search |
Effect of Nb on the Continuous Cooling Transformation Rule and Microstructure, Mechanical Properties of Ti-Mo Bearing Microalloyed Steel
Xianling HE1,Gengwei YANG1(),Xinping MAO1,2,Chibin YU1,Chuanli DA1,Xiaolong GAN1,2
1 State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
2 Research and Development Institute, Wuhan Iron and Steel (Group) Co., Ltd., Wuhan 430083, China
Cite this article: 

Xianling HE,Gengwei YANG,Xinping MAO,Chibin YU,Chuanli DA,Xiaolong GAN. Effect of Nb on the Continuous Cooling Transformation Rule and Microstructure, Mechanical Properties of Ti-Mo Bearing Microalloyed Steel. Acta Metall Sin, 2017, 53(6): 648-656.

Download:  HTML  PDF(10892KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, with the fast development of automotive industry, more and more attention has been focused on developing high strength automobile steels with excellent formability. The microalloying elements, such as Nb, Ti, Mo, which can facilitate grain refinement and precipitation hardening, were added into steels to achieve high strength and good formability. The Ti-Mo and Ti-Mo-Nb microalloyed high strength ferritic steel were developed. In this work, the continuous cooling transformation curves (CCT) of Ti-Mo and Ti-Mo-Nb steels were obtained. And the effect of Nb on the microstructure and mechanical properties of Ti-Mo low carbon microalloyed steel was investigated by means of SEM, HRTEM and EDS. The results showed that Nb could raise the Ac1 and Ac3 temperatures, and restrain the ferrite-pearlite and bainite transformation. Moreover, Nb could also refine the microstructure and harden the matrix of steel which attributed to the strain-induced precipitation of nano-sized (Ti, Nb, Mo)C particles identified by HRTEM and EDS. It was also found that the strain-induced precipitation of (Ti, Mo)C was existed in the Ti-Mo steel. And both of (Ti, Mo)C and (Ti, Nb, Mo)C particles were NaCl type structure. The lattice constants/the average particle sizes of (Ti, Mo)C and (Ti, Nb, Mo)C were 0.432 nm and 0.436 nm / 12.11 nm and 8.69 nm, respectively.

Key words:  Ti microalloyed steel      CCT curve      Nb      nano-sized precipitation      hardness     
Received:  05 October 2016     
Fund: Supported by China Postdoctoral Science Foundation (No.2014M562072)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00437     OR     https://www.ams.org.cn/EN/Y2017/V53/I6/648

Steel C Si Mn Ti Mo Nb Cr N Fe
Ti-Mo 0.06 0.070 1.44 0.097 0.28 - 0.21 0.0035 Bal.
Ti-Nb-Mo 0.06 0.088 1.46 0.100 0.29 0.074 0.20 0.0083 Bal.
Table 1  Chemical compositions of the microalloyed steels (mass fraction / %)
Fig.1  Schematic of dynamic continuous cooling transformation (CCT) curve
Fig.2  Temperature-expansion curves of Ti-Mo and Ti-Mo-Nb steels
Fig.3  SEM images of Ti-Mo steel cooled by different cooling rates (P—pearlite, PF—polygonal ferrite, GB—granular bainite, LB—lath bainite) (a) 0.5 ℃/s (b) 1 ℃/s (c) 5 ℃/s (d) 10 ℃/s (e) 20 ℃/s (f) 30 ℃/s (g) 50 ℃/s
Fig.4  SEM images of Ti-Mo-Nb steel cooled by different cooling rates(a) 0.5 ℃/s (b) 1 ℃/s (c) 5 ℃/s (d) 10 ℃/s (e) 20 ℃/s (f) 30 ℃/s (g) 50 ℃/s
Fig.5  Dynamic CCT curves of Ti-Mo (a) and Ti-Mo-Nb (b) steels (F—ferrite, B—bainite, CR—cooling rate, Ac1—start temperature of austenite formation during heating, Ac3—finish temperature of austenite formation during heating)
Fig.6  Hardness of Ti-Mo and Ti-Mo-Nb steels after cooling at different cooling rates
Fig.7  Changes of precipitate volume fraction with temperature in Ti-Mo and Ti-Mo-Nb steels
Fig.8  Morphologies (a, c) and EDS analyses (circles) (b, d) of the precipitates in Ti-Mo (a, b) and Ti-Mo-Nb (c, d) steels cooling at 50 ℃/s
Fig.9  Low (a, d) and high (b, e) magnified HRTEM images and corresponding fast Fourier transformation (FFT) diffractograms (c, f) of the interphase precipitation carbides in Ti-Mo (a~c) and Ti-Mo-Nb (d~e) steels (d—interplanar spacing)
Fig.10  Size percentage of the second particles of Ti-Mo and Ti-Mo-Nb steels at cooling rate of 50 ℃/s
Fig.11  Austenite grain boundary diagrams of Ti-Mo (a) and Ti-Mo-Nb (b) steels after deformation
[1] Shimizu T, Funakawa Y, Kaneko S.High strength steel sheets for automobile suspension and chassis use-high strength hot-rolled steel sheets with excellent press formability and durability for critical safety parts[J]. JFE Tech. Rep., 2004, 4: 25
[2] Jha G, Das S, Sinha S, et al.Design and development of precipitate strengthened advanced high strength steel for automotive application[J]. Mater. Sci. Eng., 2013, A561: 394
[3] Funakawa Y. Mechanical properties of ultra fine particle dispersion strengthened ferritic steel [J]. Mater. Sci. Forum. Trans. Tech. Publications, 2012, 706-709: 2096
[4] Wang W, Shan Y Y, Yang K.Effect of acicular ferrite microstructure composition on strength of X65 pipeline steel[J]. Acta Metall. Sin., 2007, 43: 578
[4] (王伟, 单以银, 杨柯. 超低碳微合金管线钢中针状铁素体的组成对强度的影响[J]. 金属学报, 2007, 43: 578)
[5] Mao X P, Chen Q L, Sun X J.Metallurgical interpretation on grain refinement and synergistic effect of Mn and Ti in Ti-microalloyed strip produced by TSCR[J]. J. Iron Steel Res. Int., 2014, 21: 30
[6] Zhang K, Sun X J, Yong Q L, et al.Effect of tempering time on microstructure and mechanical properties of high Ti microalloyed quenched martensitic steel[J]. Acta Metall. Sin., 2015, 51: 553
[6] (张可, 孙新军, 雍岐龙等. 回火时间对高Ti微合金化淬火马氏体钢组织及力学性能的影响[J]. 金属学报, 2015, 51: 553)
[7] Chen J, Lü M Y, Tang S, et al.Microstructure, mechanical properties and interphase precipitation behaviors in V-Ti microalloyed steel[J]. Acta Metall. Sin., 2014, 50: 524
[7] (陈俊, 吕梦阳, 唐帅等. V-Ti微合金钢的组织性能及相间析出行为[J]. 金属学报, 2014, 50: 524)
[8] Kestenbach H J, Campos S S, Morales E V.Role of interphase precipitation in microalloyed hot strip steels[J]. Mater. Sci. Technol., 2006, 22: 615
[9] Yang G W, Sun X J, Yong Q L, et al.Austenite grain refinement and isothermal growth behavior in a low carbon vanadium microalloyed steel[J]. J. Iron Steel Res. Int., 2014, 21: 757
[10] Li X L, Wang Z D.Interphase precipitation behaviors of nanometer-sized carbides in a Nb-Ti-bearing low-carbon microalloyed steel[J]. Acta Metall. Sin., 2015, 51: 417
[10] (李小琳, 王昭东. 含Nb-Ti低碳微合金钢中纳米碳化物的相间析出行为[J]. 金属学报, 2015, 51: 417)
[11] Funakawa Y, Shiozaki T, Tomita K, et al.Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides[J]. ISIJ Int., 2004, 44: 1945
[12] Zhang Z Y, Sun X J, Li Z D, et al.Effect of nanometer-sized carbides and grain boundary density on performance of Fe-C-Mo-M(M=Nb, V or Ti) fire resistant steels[J]. Chin. J. Mater. Res., 2015, 29: 269
[12] (张正延, 孙新军, 李昭东等. 纳米级碳化物及小角界面密度对Fe-C-Mo-M (M=Nb、V或Ti)系钢耐火性的影响[J]. 材料研究学报, 2015, 29: 269)
[13] Jang J H, Heo Y U, Lee C H, et al.Interphase precipitation in Ti-Nb and Ti-Nb-Mo bearing steel[J]. Mater. Sci. Technol., 2013, 29: 309
[14] Bu F Z, Wang X M, Chen L, et al.Performance of nanosized carbides precipitation and microstructure evolution in tempering process of Ti-Nb-Mo microalloyed steel[J]. Trans. Mater. Heat Treat., 2015, 36(8): 96
[14] (卜凡征, 王学敏, 陈琳等. Ti-Nb-Mo微合金钢回火过程中纳米碳化物的析出行为及组织演变[J]. 材料热处理学报, 2015, 36(8): 96)
[15] Zhang N.Effect of Nb on microstructure of CFB/M multiphase steel [D]. Beijing: North China Electric Power University (Beijing), 2009
[15] (张楠. Nb对CFB/M复相钢组织的影响[D]. 北京: 华北电力大学(北京), 2009)
[16] Weng Y Q.Microstructure Refinement Theory and Control Technology of Ultrafine Grained Steel [M]. Beijing: Metallurgical Industry Press, 2003: 57
[16] (翁宇庆. 超细晶钢——钢的组织细化理论与控制技术 [M]. 北京: 冶金工业出版社, 2003: 57)
[17] Mecozzi M G, Sietsma J, van der Zwaag S. Analysis of γ→α transformation in a Nb micro-alloyed C-Mn steel by phase field modelling[J]. Acta Mater., 2006, 54: 1431
[18] Liu X F, Jia T, Zhu B Q.Modeling the effect of Nb on austenite→ferrite phase transformation kinetics[J]. J. Northeastern Univ.(Nat. Sci.), 2016, 37: 642
[18] (刘雪峰, 贾涛, 朱本强. Nb对奥氏体→铁素体相变动力学影响的模型[J]. 东北大学学报(自然科学版), 2016, 37: 642)
[19] Bradley J R, Aaronson H I.Growth kinetics of grain boundary ferrite allotriomorphs in Fe-C-X alloys[J]. Metall. Trans., 1981, 12A: 1729
[20] Fossaert C, Rees G, Maurickx T, et al.The effect of niobium on the hardenability of microalloyed austenite[J]. Metall. Mater. Trans., 1995, 26A: 21
[21] Yuan X Q, Liu Z Y, Jiao S H, et al.The onset temperatures of γ to α-phase transformation in hot deformed and non-deformed Nb micro-alloyed steels[J]. ISIJ Int., 2006, 46: 579
[22] Chen C Y, Yen H W, Kao F H, et al.Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides[J]. Mater. Sci. Eng., 2009, A499: 162
[23] Duan X G, Cai Q W, Wu H B.Ti-Mo ferrite matrix micro-alloy steel with nanometer-sized precipitates[J]. Acta Metall. Sin., 2011, 47: 251
[23] (段修刚, 蔡庆伍, 武会宾. Ti-Mo全铁素体基微合金高强钢纳米尺度析出相[J]. 金属学报, 2011, 47: 251)
[24] Yong Q L.Secondary Phases in Steels [M]. Beijing: Metallurgical Industry Press, 2006: 27
[24] (雍岐龙. 钢铁材料中的第二相 [M]. 北京: 冶金工业出版社, 2006: 27)
[25] Irvine K J, Pickering F B, Gladman T R.Grain-refined C-Mn steels[J]. J. Iron Steel Inst., 1967, 205: 161
[26] Nordberg H, Aromsson B.Solubility of niobium carbide in austenite[J]. J. Iron Steel Inst., 1968, 206: 1263
[27] Pavlina E J, Speer J G, van Tyne C J. Equilibrium solubility products of molybdenum carbide and tungsten carbide in iron[J]. Scr. Mater., 2012, 66: 243
[28] Xu Y, Sun M X, Zhou Y L, et al.Precipitation behavior of (Nb, Ti)C in coiling process and its effect on micro-mechanical characteristics of ferrite[J]. Acta Metall. Sin., 2015, 51: 31
[28] (徐洋, 孙明雪, 周砚磊等. (Nb, Ti)C在轧后卷取中的析出及对铁素体相微观力学特征的影响[J]. 金属学报, 2015, 51: 31)
[29] Wu J B, Liu G Q, Wang H.Effect of Nb, Ti and V on the hot deformation behavior of low carbon Nb microalloyed steels[J]. Acta Metall. Sin., 2010, 46: 838
[29] (吴晋彬, 刘国权, 王浩. Nb, Ti和V对含Nb微合金钢热变形行为的影响[J]. 金属学报, 2010, 46: 838)
[1] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[2] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[3] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[4] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[5] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[6] LI Yamin, ZHANG Yaoyao, ZHAO Wang, ZHOU Shengrui, LIU Hongjun. First-Principles Study on the Effect of Cu on Nb Segregation in Inconel 718 Alloy[J]. 金属学报, 2022, 58(2): 241-249.
[7] WANG Tao, LONG Dijun, YU Liming, LIU Yongchang, LI Huijun, WANG Zumin. Microstructure and Mechanical Properties of 14Cr-ODS Steel Fabricated by Ultra-High Pressure Sintering[J]. 金属学报, 2022, 58(2): 184-192.
[8] XIANG Zhaolong, ZHANG Lin, XIN Yan, AN Bailing, NIU Rongmei, LU Jun, MARDANI Masoud, HAN Ke, WANG Engang. Effect of Cr Content on Microstructure of Spinodal Decomposition and Properties in FeCrCoSi Permanent Magnet Alloy[J]. 金属学报, 2022, 58(1): 103-113.
[9] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[10] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[11] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Lüders-Like Deformation and Stress Transfer Behavior in an In Situ NiTi-NbTi Composite[J]. 金属学报, 2021, 57(7): 921-927.
[12] CAO Qingping, LV Linbo, WANG Xiaodong, JIANG Jianzhong. Magnetron Sputtering Metal Glass Film Preparation and the “Specimen Size Effect” of the Mechanical Property[J]. 金属学报, 2021, 57(4): 473-490.
[13] WANG Mingkang, YUAN Junhao, LIU Yufeng, WANG Qing, DONG Chuang, ZHANG Zhongwei. Effect of Ti on β Structural Stability and Mechanical Properties of Zr-Nb Binary Alloys[J]. 金属学报, 2021, 57(1): 95-102.
[14] WU Yun, LIU Yahui, KANG Maodong, GAO Haiyan, WANG Jun, SUN Baode. Microstructure Evolution of K4169 Alloy During Cyclic Loading[J]. 金属学报, 2020, 56(9): 1185-1194.
[15] TONG Wenhui, ZHANG Xinyuan, LI Weixuan, LIU Yukun, LI Yan, GUO Xuming. Effect of Laser Process Parameters on the Microstructure and Properties of TiC Reinforced Co-Based Alloy Laser Cladding Layer[J]. 金属学报, 2020, 56(9): 1265-1274.
No Suggested Reading articles found!