Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (6): 641-647    DOI: 10.11900/0412.1961.2016.00415
Orginal Article Current Issue | Archive | Adv Search |
Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy
Qianqian GU,Ying RUAN(),Haizhe ZHU,Na YAN
Department of Applied Physics, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

Qianqian GU, Ying RUAN, Haizhe ZHU, Na YAN. Influence of Cooling Rate on Microstructural Formation of Melt-Spun Fe-Al-Nb Ternary Alloy. Acta Metall Sin, 2017, 53(6): 641-647.

Download:  HTML  PDF(4838KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe-Al-Nb ternary alloys as a sort of high-temperature structure materials are paid more attention in recent years. The pseudobinary eutectic composed of Nb(Fe, Al)2 and α-Fe phases in Fe-Al-Nb alloy transformed from lamellar shape to fiber with the increase of growth rate in directional solidification. Heat treatment techniques were applied to investigate the strengthening mechanism related to microstructural formation. However, influence of cooling rate on microstructure especially pseudobinary eutectic is not clear yet. In this work, rapid solidification and the microstructural formation of Fe67.5Al22.8Nb9.7 ternary alloy were investigated by melt spinning technique to reveal the rapid solidification mechanism of the alloy. As the wheel rate increases from 10 m/s to 40 m/s, the thickness of alloy ribbon decrease by one order of magnitude, i.e. from 67.70 μm to 4.69 μm, the cooling rate increases by seven times, i.e. from 1.24×106 K/s to 9.53×106 K/s. Consequently, the sample shape transforms from regular ribbon to regular ribbon, fishbone-like ribbon and droplets. The microstructure consists of Nb(Fe, Al)2 and α-Fe phases. The rise of wheel rate leaded to the microstructural transition and refinement, as well as the refinement in terms of eutectic interlamellar spacing and grain size (i.e. grain diameter) measured using Image-Pro Plus software. On condition that the wheel rate is less than 40 m/s, the ribbon microstructural characteristics are divided into two regions, i.e. primary α-Fe phase plus lamellar pseudobinary eutectic near free surface region and anomalous pseudobinary eutectic near roller surface region. As the wheel rate increases from 10 m/s to 30 m/s, lamellar eutectic becomes fragmented and the amount of anomalous pseudobinary eutectic enlarges. Once the wheel rate is up to 40 m/s, anomalous pseudobinary eutectic is the only microstructure of the fishbone-like ribbon. Meanwhile, the alloy droplets with the diameter size ranging from 90 μm to 1500 μm were achieved at the wheel rate of 40 m/s. Owing to the relative low cooling rate, the microstructure of the alloy droplet consist of primary α-Fe phase and lamellar pseudobinary eutectic. As the droplet diameter decreases, the primary α-Fe phase transforms from dendrite to equiaxed grain and the pseudobinary lamellar eutectic is refined.

Key words:  Fe-Al-Nb ternary alloy      rapid solidification      microstructure      cooling rate      eutectic     
Received:  14 September 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51327901, U1660108 and 51301138), Aviation Science Foundation of China (No.2014ZF53069), Shaanxi Industrial Science and Technology Project (No.2016GY-247) and NPU Foundation for Fundamental Research (No.3102015ZY077)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00415     OR     https://www.ams.org.cn/EN/Y2017/V53/I6/641

Fig.1  XRD spectrum of Fe67.5Al22.8Nb9.7 ternary alloy
Fig.2  Ribbons thickness h versus wheel speed Vr
Fig.3  Temperature variations of Fe67.5Al22.8Nb9.7 alloy at different Vr (a) and cooling curve of the alloy (b) (TL—liquidus temperature, TΔH—temperature of releasing crystallization heat, Rc—cooling rate)
Fig.4  SEM images of Fe67.5Al22.8Nb9.7 alloy ribbon at Vr=10 m/s (a, a1, a2), Vr=20 m/s (b, b1, b2), Vr=30 m/s (c) and Vr=40 m/s (d)
Vr / (ms-1) fd / % λ / μm
10 18 0.341
20 32 0.178
30 47 0.121
40 100
Table 1  Microstructural parameters of the alloy ribbons at different wheel speeds
Fig.5  Fishbone-like ribbons and droplets at Vr=40 m/s
Fig.6  Low (a, c) and locally high (b, d) magnified SEM images of Fe67.5Al22.8Nb9.7 alloy droplets with droplet diameters D of 1045 μm (a, b) and 95 μm (c, d) at Vr=40 m/s
Fig.7  λ versus droplet diameter D of Fe67.5Al22.8Nb9.7 alloy droplets
[1] Galenko P K, Abramova E V, Jou D, et al.Solute trapping in rapid solidification of a binary dilute system: A phase-field study[J]. Phys. Rev., 2011, 84E: 041143
[2] Kim Y W.Microstructures and mechanical properties of rapidly solidified Mg-Al-Zn-MM alloys[J]. J. Mater. Sci. Technol., 2008, 24: 89
[3] Arai Y, Emi T, Fredriksson H, et al.In-situ observed dynamics of peritectic solidification and δ/γ transformation of Fe-3 to 5 At. pct Ni alloys[J]. Metall. Mater. Trans., 2005, 36A: 3065
[4] Ruan Y, Wang X J, Chang S Y.Two hardening mechanisms in high-level undercooled Al-Cu-Ge alloys[J]. Acta Mater., 2015, 91: 183
[5] Liu N, Liu F, Chen Z, et al.Liquid-phase separation in rapid solidification of undercooled Fe-Co-Cu melts[J]. J. Mater. Sci. Technol., 2012, 28: 622
[6] Wang H P, Chang J, Wei B.Measurement and calculation of surface tension for undercooled liquid nickel and its alloy[J]. J. Appl. Phys., 2009, 106: 033506
[7] Liu Z G, Chai L H, Chen Y Y, et al.Development of rapidly solidified titanium aluminide compounds[J]. Acta Metall. Sin., 2008, 44: 569
[7] (刘志光, 柴丽华, 陈玉勇等. 快速凝固TiAl化合物的研究进展[J]. 金属学报, 2008, 44: 569)
[8] Clopet C R, Cochrane R F, Mullis A M.Spasmodic growth during the rapid solidification of undercooled Ag-Cu eutectic melts[J]. Appl. Phys. Lett., 2013, 102: 031906
[9] Li H, Liang Y F, He R Q, et al.Ordered structure and mechanical properties of Fe-6.5%Si alloy fabricated by rapid quenching[J]. Acta Metall. Sin., 2013, 49: 1452
[9] (李慧, 梁永锋, 贺睿琦等. 快速凝固Fe-6.5%Si合金有序结构及力学性能研究[J]. 金属学报, 2013, 49: 1452)
[10] Huang Q S, Liu L, Wei X X, et al.Solidification behaviors of undercooled Ni-P alloys[J]. Acta Phys. Sin., 2012, 61: 166401
[10] (黄起森, 刘礼, 韦修勋等. 过冷Ni-P合金的凝固行为[J]. 物理学报, 2012, 61: 166401)
[11] Su J H, Ren F Z, Tian B H, et al.Aging strengthening in rapidly solidified Cu-Cr-Sn-Zn alloy[J]. J. Mater. Sci. Technol., 2009, 25: 230
[12] Ruan Y, Wei B B.Rapid solidification of undercooled Al-Cu-Si eutectic alloys[J]. Chin. Sci. Bull., 2008, 53: 2716
[12] (阮莹, 魏炳波. 三元Al-Cu-Si共晶合金的深过冷与快速凝固[J]. 科学通报, 2008, 53: 2716
[13] Zhang M, Zhang L L, Pang S J, et al.Research and application of rapid-solidified Mg-Zn binary ribbons in landfill leachate treatment[J]. J. Alloys Compd., 2014, 615(Suppl.1): S595
[14] Wu W, Liu J H, Jiang C B, et al.Giant magnetostriction in Tb-doped Fe83Ga17 melt-spun ribbons[J]. Appl. Phys. Lett., 2013, 103: 262403
[15] Milenkovic S, Palm M.Microstructure and mechanical properties of directionally solidified Fe-Al-Nb eutectic[J]. Intermetallics, 2008, 16: 1212
[16] Mota M A, Coelho A A, Bejarano J M Z, et al. Fe-Al-Nb phase diagram investigation and directional growth of the (Fe, Al)2Nb-(Fe, Al, Nb)ss eutectic system[J]. J. Alloys Compd., 2005, 399: 196
[17] Mota M A, Coelho A A, Bejarano J M Z, et al. Directional growth and characterization of Fe-Al-Nb eutectic alloys [J]. J. Cryst. Growth, 1999, 198-199: 850
[18] Park J M, Kim K B, Kim W T, et al.High strength ultrafine eutectic Fe-Nb-Al composites with enhanced plasticity[J]. Intermetallics, 2008, 16: 642
[19] Morris D G, Requejo L M, Mu?oz-Morris M A. Age hardening in some Fe-Al-Nb alloys[J]. Scr. Mater., 2006, 54: 393
[20] Morris D G, Mu?oz-Morris M A, Requejo L M, et al. Strengthening at high temperatures by precipitates in Fe-Al-Nb alloys[J]. Intermetallics, 2006, 14: 1204
[21] Prymak O, Stein F.Solidification and high-temperature phase equilibria in the Fe-Al-rich part of the Fe-Al-Nb system[J]. Intermeta-llics, 2010, 18: 1322
[22] Stein F, Schneider A, Frommeyer G.Flow stress anomaly and order-disorder transitions in Fe3Al-based Fe-Al-Ti-X alloys with X=V, Cr, Nb, or Mo[J]. Intermetallics, 2003, 11: 71
[23] Morris D G, Mu?oz-Morris M A, Baudin C. The high-temperature strength of some Fe3Al alloys[J]. Acta Mater., 2004, 52: 2827
[24] Yang H Q, Yao Z J, Luo X X, et al.Effect of Nb addition on structure and mechanical properties of FeAl coating[J]. Surf. Coat. Technol., 2015, 270: 221
[25] Morris D G, Mu?oz-Morris M A, Baudin C. The high-temperature strength of some Fe3Al alloys[J]. Acta Mater., 2004, 52: 2827
[26] Morris D G, Requejo L M, Mu?oz-Morris M A. A study of precipitation in DO3 ordered Fe-Al-Nb alloy[J]. Intermetallics, 2005, 13: 862
[27] Drensler S, Mardare C C, Milenkovic S, et al.Selective dissolution in AlFeNb alloys[J]. Phys. Status Solidi, 2012, 209A: 854
[28] Stein F, He C, Prymak O, et al.Phase equilibria in the Fe-Al-Nb system: Solidification behaviour, liquidus surface and isothermal sections[J]. Intermetallics, 2015, 59: 43
[29] Ruan Y, Gu Q Q, Lü P, et al.Rapid eutectic growth and applied performances of Fe-Al-Nb alloy solidified under electromagnetic levitation condition[J]. Mater. Des., 2016, 112: 239
[30] Xu J F, Wei B B.Liquid phase flow and microstructure formation during rapid solidification[J]. Acta Phys. Sin., 2004, 53: 1909
[30] (徐锦锋, 魏炳波. 急冷快速凝固过程中液相流动与组织形成的相关规律[J]. 物理学报, 2004, 53: 1909)
[31] Tkatch V I, Denisenko S N, Beloshov O N.Direct measurements of the cooling rates in the single roller rapid solidification technique[J]. Acta Mater., 1997, 45: 2821
[1] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[2] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[3] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!