Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (4): 472-478    DOI: 10.11900/0412.1961.2016.00288
Orginal Article Current Issue | Archive | Adv Search |
Microstructure and Properties of TiC/Co-Based Alloyby Laser Cladding on the Surface of NodularGraphite Cast Iron
Wenhui TONG1,Zilong ZHAO1,Xinyuan ZHANG1,Jie WANG1,Xuming GUO1,Xinhua DUAN2,Yu LIU2
1 School of Materials Science and Engineering, Shenyang Aerospace University, Shenyang 110136, China
2 Shenyang Dalu Laser Complete Equipment Co. Ltd., Shenyang 110136, China
Cite this article: 

Wenhui TONG,Zilong ZHAO,Xinyuan ZHANG,Jie WANG,Xuming GUO,Xinhua DUAN,Yu LIU. Microstructure and Properties of TiC/Co-Based Alloyby Laser Cladding on the Surface of NodularGraphite Cast Iron. Acta Metall Sin, 2017, 53(4): 472-478.

Download:  HTML  PDF(5514KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ductile cast iron, with excellent comprehensive mechanical properties, is widely used manufacturing traction wheel, crankshaft, cylinder liner, etc.. However, in the harsh environment, it often leads to failure due to the serious surface wear. At present, the repair methods for the damaged parts are mainly thermal spraying, deposit welding and other methods, but the properties and application effect of the repaired parts need to be improved. In order to significantly improve the surface properties of ductile cast iron, the 30%TiC/Co-based alloy cladding layer prepared by laser cladding is put forward on the surface of ductile cast iron in this work. The microstructure, composition, phase, hardness of the laser cladding layer are investigated and analyzed by OM, SEM, EDS, XRD, TEM and MHV2000 digital microhardness tester. The results show that the cladding layer can be integrated metallurgically with the nodular graphite cast iron matrix. The cladding layer consists of a surface layer of dendritic crystals and an internal cellular crystal. The primary phase of TiC from the melt is precipitated in situ during the solidification after laser heating. The amount of the primary TiC is gradually increased from the inner layer to the surface layer. Meanwhile, the undissolved TiC is dispersively distributed among the dendrites. The laser cladding layer is mainly composed of γ-Co, TiC, CoCx and a small amount of Cr7C3. The hardness maximum of the cladding layer is 1278.8 HV0.2, up to 5 times more than the hardness of the nodular graphite cast iron matrix.

Key words:  laser cladding      Co-based alloy      TiC      microstructure      hardness     
Received:  07 July 2016     

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00288     OR     https://www.ams.org.cn/EN/Y2017/V53/I4/472

Fig.1  Macroscopic morphology (a) and microstructure (b) of the cross section of laser cladding layer (CZ—cladding zone, BZ—bonded zone, HAZ—heat affected zone, SUB—substrate)
Fig.2  Microstructures of the 30%TiC/Co-based alloy laser cladding layer on the surface of ductile cast iron
(a) near surface (b) middle zone of layer (c) combining zone (d) HAZ
Fig.3  Scanning direction (a) and element distributions of Ti (b) and C (c) of cross section of cladding layer
Fig.4  Cross sectional SEM image of cladding layer (a) and EDS analyses of points I (b) and II (c) in Fig.4a
Fig.5  XRD spectrum of the laser cladding layer of 30%TiC/Co-based alloy
Fig.6  TEM images and SAED patterns (insets) of the enhanced phase in the laser cladding layer of 30%TiC/Co-based alloy (a) TiC (b) γ-Co (c) CoCx
Fig.7  Microhardness distribution of the cross section of the cladding layer
[1] Fang G R, Wang Y Z.The birth, application, tendency of technology development——The one of the most important technology progresses of the material science of the 20th century[J]. Mod. Cast Iron, 2000, (1): 3
[1] (房贵如, 王云昭. 现代球墨铸铁的诞生、应用及技术发展趋势——20世纪材料科学最重大的技术进展之一[J]. 现代铸铁, 2000, (1): 3)
[2] Gao B.Experiment research on laser cladding repairing technology based on multiple-cladding [D]. Shanghai: Shanghai Jiao Tong University, 2010
[2] (高宾. 基于复合堆焊的激光熔覆修复技术的实验研究 [D]. 上海交通大学, 2010)
[3] Xie Y T, Wu G H, Wang C X, et al.Study on alloy ductile iron air-cooled roller repaired by laser cladding[J]. Mater. Heat Treat. Technol., 2012, 41(24): 168
[3] (谢雨田, 吴光辉, 王春霞等. 激光熔覆修复合金球墨铸铁风冷辊的研究[J]. 热加工工艺, 2012, 41(24): 168)
[4] Shan J G, Zhang D, Ren J L.Study on the quality of high power density focused light beam powder surfacing[J]. Chin. J. Mechanical Eng., 2001, 37(10): 47
[4] (单际国, 张迪, 任家烈. 高能密度聚焦光束粉末堆焊质量的研究[J]. 机械工程学报, 2001, 37(10): 47)
[5] Pei Y T.In-situ gradient coating of TiCp/Ni alloy by laser cladding and its mechanism[J]. Acta Metall. Sin., 1998, 34: 987
[5] (裴宇韬. 激光熔覆TiCp/Ni合金自生梯度涂层及其自生机制[J]. 金属学报, 1998, 34: 987)
[6] Zhang J, Liu J C, Zhang F Q, et al.Fe-Cr-Si-B coating by laser cladding on nodular cast iron[J]. Trans. Mater. Heat Treat., 2010, 31(5): 133
[6] (张静, 刘继常, 张福全等. 球墨铸铁表面激光熔覆Fe-Cr-Si-B涂层[J]. 材料热处理学报, 2010, 31(5): 133)
[7] Li Y L, Du D M, Wang L.Microstructure and properties of surface laser cladding Fe-base alloy layer on ductile cast iron[J]. Mater. Mech. Eng., 2011, 35(10): 16
[7] (李养良, 杜大明, 王利. 球墨铸铁表面激光熔覆铁基合金层的组织与性能[J]. 机械工程材料, 2011, 35(10): 16)
[8] Zhang Y F, Yan Y T, Sun Z L.Wear characteristics of Ni-based super-alloy onto CrMo cast iron by laser cladding[J]. Lubric. Eng., 2007, 32(7): 108
[8] (张云凤, 闫玉涛, 孙志礼. 铸铁CrMo表面激光熔覆Ni基高温合金粉末的磨损特性[J]. 润滑与密封, 2007, 32(7): 108)
[9] Yang J X, Zuo T C, Xu W Q, et al.The research of laser cladding Co-base alloy coating on ductile cast iron[J]. Laser Technol., 2006, 30: 517
[9] (杨胶溪, 左铁钏, 徐文清等. 球墨铸铁表面激光熔覆钴基合金涂层的研究[J]. 激光技术, 2006, 30: 517)
[10] Xu W X, Zhang Q L, Yao J H.Research on high-temperature wear resistance of laser cladding Co-based WC composite coating on hot-forging die[J]. Appl. Laser, 2013, 33: 370
[10] (徐卫仙, 张群莉, 姚建华. 热锻模激光熔覆Co基WC涂层的高温磨损性能研究[J]. 应用激光, 2013, 33: 370)
[11] Li M X, He Y Z, Sun G X.Microstructure and wear resistance of laser clad cobalt-based alloy multi-layer coatings[J]. Appl. Surf. Sci., 2004, 230: 201
[12] Emamian A, Corbin S F, Khajepour A.Tribology characteristics of in-situ laser deposition of Fe-TiC[J]. Surf Coat Technol., 2012, 206: 4495
[13] Abboud J H, West D R F. In situ production of Ti-TiC composites by laser melting[J]. J. Mater. Sci. Lett., 1992, 11: 1675
[14] Zhang S, Wu W T, Wang M C, et al.In-situ synthesis and wear performance of TiC particle reinforced composite coating on alloy Ti6Al4V[J]. Surf. Coat Technol., 2001, 138: 95
[15] Man H C, Zhang S, Cheng F T, et al.Microstructure and formation mechanism of in situ synthesized TiC/Ti surface MMC on Ti-6Al-4V by laser cladding[J]. Scr. Mater., 2001, 44: 2801
[16] Nga P T H. Laser cladding TiC particles reinforced Co-based alloy coating on H13 steel surface and its high-temperature wear property [D]. Kunming: Kunming University of Science and Technology, 2013
[16] (范氏红娥. H13钢表面激光熔覆TiC/Co基涂层及其高温磨损性能研究 [D]. 昆明: 昆明理工大学, 2013)
[17] Zhao W Y.Research on microstructure and properties of Stellite 6 coatings by laser cladding on 2Cr12MoV [D]. Shanghai: Shanghai Jiao Tong University, 2015
[17] (赵文雨. 2Cr12MoV表面激光熔覆Stellite 6涂层的组织及性能研究 [D]. 上海: 上海交通大学, 2015)
[18] Tu Y, Zhang Y Z, Xi M Z.Investigation of nickel-based alloy coating on stainless steel by laser cladding[J]. Chin. J. Rare Met., 2008, 32: 598
[18] (涂义, 张永忠, 席明哲. 不锈钢表面激光熔覆镍基合金层研究[J]. 稀有金属, 2008, 32: 598)
[19] Wang C Q, Liu H X, Zhou R.Characteristic behaviors of particle phases in NiCrBSi-TiC composite coating by laser cladding assisted by mechanical vibration[J]. Acta Metall. Sin., 2013, 49: 221
[19] (王传琦, 刘洪喜, 周荣. 机械振动辅助激光熔覆NiCrBSi-TiC复合涂层中颗粒相行为特征 [J]. 金属学报, 2013, 49: 221)
[20] He L H, Zhou F, Yang H Y.Research of in situ synthesis of TiC-TiB2 reinforced Co-based composite coating by laser cladding[J]. Laser Technol., 2013, 37: 306
[20] (何良华, 周芳, 杨蕙瑶. 激光熔覆原位合成TiC-TiB2增强钴基复合涂层的研究[J]. 激光技术, 2013, 37: 306)
[21] Qiu X L.TiC based cermet coating produced by powder feeding laser cladding[J]. Heat Treat., 2006, 35(5): 19
[21] (邱小林. 激光熔覆TiC金属基陶瓷涂层的研究[J]. 热加工工艺, 2006, 35(5): 19)
[22] Zhang S, Zhang C H, Wu W, et al.An in situ formed TiC particle reinforcement composite coating induced by laser melting on surface of alloy Ti6Al4V and its wearing performance[J]. Acta Metall. Sin., 2001, 37: 315
[22] (张松, 张春华, 吴维等. Ti6Al4V表面激光熔覆原位自生TiC颗粒增强钛基复合材料及摩擦磨损性能[J]. 金属学报, 2001, 37: 315)
[23] Li Q, Li D Z, Qian B N.Progress of dendritic morphology evolution during solidification process[J]. Mater. Rev., 2004, 18(4): 5
[23] (李强, 李殿中, 钱百年. 凝固过程中枝晶组织形貌演变模拟进展[J]. 材料导报, 2004, 18(4): 5)
[24] Li M X, He Y Z, Sun G X.Microstructure of laser cladding Co-based alloy on Ni-based super alloy[J]. Trans. China Welding Inst., 2002, 23(6): 17
[24] (李明喜, 何宜柱, 孙国雄. Ni基高温合金表面激光熔覆Co基合金的组织[J]. 焊接学报, 2002, 23(6): 17)
[25] Wang X H, Zhang M, Zou Z D, et al.Microstructure and properties of laser cladding TiCp /Ni-based alloys composite coating[J]. Chin. J. Mechanical Eng., 2003, 39(2): 37
[25] (王新洪, 张敏, 邹增大等. 激光熔覆TiCp /Ni基合金复合涂层的显微组织与性能[J]. 机械工程学报, 2003, 39(2): 37)
[26] He Y Z, Si S H. Xu K, et al.Effect of Cr3C2 particles on microstructure and corrosion-wear resistance of laser cladding Co-based alloy coating[J]. China J. Lasers, 2004, 31: 1143
[26] (何宜柱, 斯松华, 徐琨等. Cr3C2对激光熔覆钴基合金涂层组织与性能的影响[J]. 中国激光, 2004, 31: 1143)
[27] Tong W H, Zhao Z L, Wang J, et al.Microstructure and property of laser cladding cobalt based alloy coating on ductile cast iron[J]. Chin. J. Rare Met., 2016, (9): 22
[27] (童文辉, 赵子龙, 王杰等. 球墨铸铁表面激光熔覆钴基合金涂层的组织与性能[J]. 稀有金属, 2016, (9): 22)
[28] Li J, Zhong M L, Liu W J.Microstructures and properties of laser-clad in situ particle reinforced Ni-base composite coating on 55Mn steel[J]. Heat Trea.t Met., 2006, 31(11): 8
[28] (李晶, 钟敏霖, 刘文今. 55Mn钢表面激光熔覆原位析出颗粒增强Ni基复合涂层的组织与性能[J]. 金属热处理, 2006, 31(11): 8)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] XU Yongsheng, ZHANG Weigang, XU Lingchao, DAN Wenjiao. Simulation of Deformation Coordination and Hardening Behavior in Ferrite-Ferrite Grain Boundary[J]. 金属学报, 2023, 59(8): 1042-1050.
[8] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[9] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[10] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[11] LU Yuhua, WANG Haizhou, LI Dongling, FU Rui, LI Fulin, SHI Hui. A Quantitative and Statistical Method of γ' Precipitates in Superalloy Based on the High-Throughput Field Emission Scanning Eelectron Microscope[J]. 金属学报, 2023, 59(7): 841-854.
[12] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[13] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[14] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[15] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
No Suggested Reading articles found!