Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (4): 440-446    DOI: 10.11900/0412.1961.2016.00491
Orginal Article Current Issue | Archive | Adv Search |
Fabrication of Novel Bimodal Titanium Alloy with High-Strength and Large-Ductility by Semi-Solid Sintering
Limei KANG1,Chao YANG1,2(),Yuanyuan LI1,2
1 National Engineering Research Center of Near-Net-Shape Forming for Metallic Materials, South China University of Technology, Guangzhou 510640, China
2 College of Materials Science and Engineering, Jilin University, Changchun 130022, China
Cite this article: 

Limei KANG,Chao YANG,Yuanyuan LI. Fabrication of Novel Bimodal Titanium Alloy with High-Strength and Large-Ductility by Semi-Solid Sintering. Acta Metall Sin, 2017, 53(4): 440-446.

Download:  HTML  PDF(5247KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

According to Hall-Petch relationship, high strength of nano-grain and ultrafine-grain meta-llic materials are always accompanied by the cost of ductility because of the lack of work hardening induced by rare or absent dislocation or slip band. And various strategies including semi-solid processing accompanied by rapid solidification, recrystallization induced by plastic deformation and heat treatment, consolidation of blended powders with different grain sizes, and so on, have been developed to fabricate so-called bimodal/multimodal microstructures in the pursuit of high strength and no sacrificing ductility. As one of the most significant types of phase transformation in metallography, eutectic reaction was frequently utilized to tailor phase constitution and its microstructure due to high strength resulted from resultant lamellar eutectic structure. Generally, eutectic structure is more common in solidification and even traditional semi-solid processing for low melting point alloys (such as aluminum and magnesium alloys). In this work, a fundamentally novel approach of semi-solid sintering stemmed from the formation of liquid phase induced by eutectic transformation is introduced. Through regulation of the phase composition of eutectic transformation (or eutectic liquid content), novel bimodal Ti52.1Fe21.7Co8.2Nb12.2Al5.8 alloy with high-strength and large-ductility was successfully fabricated by semi-solid sintering of amorphous alloy powder with multi-phase eutectic system. The fabricated bimodal microstructure consists of fine nearly equiaxed fcc Ti2(Co, Fe) embedded into ultrafine lamellar eutectic matrix containing bcc β-Ti and bcc Ti(Fe, Co) lamellae, which is different from bimodal microstructures reported so far. The fabricated bimodal alloy exhibits ultra-high yield strength of 2050 MPa and large plastic strain of 19.7%, superior to those of bimodal titanium alloys reported so far. The method is conducive to process high-performance new structural metallic alloys in high melting point alloy systems.

Key words:  titanium alloy      bimodal microstructure      semi-solid sintering      spark plasma sintering      eutectic transformation     
Received:  07 November 2016     
Fund: Supported by National Natural Science Foundation of China (Nos.51574128 and 51627805) and Natural Science Foundation for Research Team of Guangdong Province (No.2015A030312003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2016.00491     OR     https://www.ams.org.cn/EN/Y2017/V53/I4/440

Fig.1  HRTEM image and corresponding FFT pattern (inset) of the as-milled Ti52.1Fe21.7Co8.2Nb12.2Al5.8 alloy powder
Fig.2  DSC curve and in-situ XRD spectra of the as-milled Ti52.1Fe21.7Co8.2Nb12.2Al5.8 alloy powder (ΔHx—released heat per mole of amorphous crystallization)
Fig.3  XRD spectra of Ti52.1Fe21.7Co8.2Nb12.2Al5.8 bulk alloys fabricated by solid sintering, semi-solid sintering and suction casting, respectively
Fig.4  SEM images of Ti52.1Fe21.7Co8.2Nb12.2Al5.8 bulk alloys fabricated by solid sintering (a), semi-solid sintering (b) and suction casting (c), respectively
Fig.5  TEM images and corresponding SAED patterns of Ti52.1Fe21.7Co8.2Nb12.2Al5.8 bulk alloys fabricated by solid sintering (a), suction casting (b), and semi-solid sintering (c~f) (Figs.5c and f corresponding to the area 1 in Fig.4b, Figs.5d and e corresponding to the area 2 in Fig.4b)
Fig.6  Compressive engineering stress-strain curves of Ti52.1Fe21.7Co8.2Nb12.2Al5.8 bulk alloys fabricated by solid sintering, semi-solid sintering and suction casting, respectively
Fig.7  Yield strength vs plastic strain of representative bimodal titanium alloys in this work and reported so far
Processing method σy / MPa εe / % σu / MPa εf / %
Solid sintering 2175 4.2 2341 5.1
Semi-solid sintering 2050 3.3 2897 23.0
Suction casting 1750 3.8 2300 10.0
Table 1  Mechanical properties of Ti52.1Fe21.7Co8.2Nb12.2Al5.8 bulk alloys fabricated by different processing methods under compression test
[1] He G, Eckert J, L?ser W, et al.Novel Ti-base nanostructure-dendrite composite with enhanced plasticity[J]. Nat. Mater., 2003, 2: 33
[2] He G, Eckert J, L?ser W, et al.Composition dependence of the microstructure and the mechanical properties of nano/ultrafine-structured Ti-Cu-Ni-Sn-Nb alloys[J]. Acta Mater., 2004, 52: 3035
[3] Han J H, Kim K B, Yi S, et al.Formation of a bimodal eutectic structure in Ti-Fe-Sn alloys with enhanced plasticity[J]. Appl. Phys. Lett., 2008, 93: 141901
[4] Das J, Ettingshausen F, Eckert J.Ti-base nanoeutectic-hexagonal structured (D019) dendrite composite[J]. Scr. Mater., 2008, 58: 631
[5] Okulov I V, Kühn U, Marr T, et al.Deformation and fracture behavior of composite structured Ti-Nb-Al-Co(-Ni) alloys[J]. Appl. Phys. Lett., 2014, 104: 071905
[6] Ku?hn U, Mattern N, Gebert A, et al. Nanostructured Zr- and Ti-based composite materials with high strength and enhanced plasticity[J]. J. Appl. Phys., 2005, 98: 054307
[7] Zhang L C, Lu H B, Mickel C, et al.Ductile ultrafine-grained Ti-based alloys with high yield strength[J]. Appl. Phys. Lett., 2007, 91: 051906
[8] Louzguine-Luzgin D V, Louzguina-Luzgina L V, Kato H, et al. Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility[J]. Acta Mater., 2005, 53: 2009
[9] Zhang L C, Das J, Lu H B, et al.High strength Ti-Fe-Sn ultrafine composites with large plasticity[J]. Scr. Mater., 2007, 57: 101
[10] Wu X L, Yang M X, Yuan F P, et al.Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility[J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
[11] Yin W H, Xu F, Ertorer O, et al.Mechanical behavior of microstructure engineered multi-length-scale titanium over a wide range of strain rates[J]. Acta Mater., 2013, 61: 3781
[12] Long Y, Wang T, Zhang H Y, et al.Enhanced ductility in a bimodal ultrafine-grained Ti-6Al-4V alloy fabricated by high energy ball milling and spark plasma sintering[J]. Mater. Sci. Eng., 2014, A608: 82
[13] Srinivasarao B, Oh-ishi K, Ohkubo T, et al. Bimodally grained high-strength Fe fabricated by mechanical alloying and spark plasma sintering[J]. Acta Mater., 2009, 57: 3277
[14] Liu Y Z, Li Z L, Gu C X.Deformation behavior and microstructure evolution of 7050 aluminum alloy during semi-solid state compression process[J]. Acta Metall. Sin., 2013, 49: 1597
[14] (刘允中, 李志龙, 顾才鑫. 7050铝合金半固态压缩变形行为及组织演变[J]. 金属学报, 2013, 49: 1597)
[15] Fan Z.Semisolid metal processing[J]. Int. Mater. Rev., 2002, 47: 49
[16] Ku?hn U, Mattern N, Gebert A, et al. Nanostructured Zr- and Ti-based composite materials with high strength and enhanced plasticity[J]. J. Appl. Phys., 2005, 98: 054307
[17] Liu L H, Yang C, Kang L M, et al.A new insight into high-strength Ti62Nb12.2Fe13.6Co6.4Al5.8 alloys with bimodal microstructure fabricated by semi-solid sintering[J]. Sci. Rep., 2016, 6: 23467
[18] Ge Z M.Titanium Binary Phase Diagram [M]. Beijing: National Defence Industry Press, 1977: 12
[18] (葛志明. 钛的二元系相图 [M]. 北京: 国防工业出版社, 1977: 12)
[19] Inoue A, Takeuchi A.Recent development and application products of bulk glassy alloys[J]. Acta Mater., 2011, 59: 2243
[20] Lee S W, Kim J T, Hong S H, et al.Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite[J]. Sci. Rep., 2014, 4: 6500
[21] Liu L H, Yang C, Yao Y G, et al.Densification mechanism of Ti-based metallic glass powders during spark plasma sintering process[J]. Intermetallics, 2015, 66: 1
[22] Yang C, Liu L H, Cheng Q R, et al.Equiaxed grained structure: A structure in titanium alloys with higher compressive mechanical properties[J]. Mater. Sci. Eng., 2013, A580: 397
[23] Liu L H, Yang C, Kang L M, et al.Equiaxed Ti-based composites with high strength and large plasticity prepared by sintering and crystallizing amorphous powder[J]. Mater. Sci. Eng., 2016, A650: 171
[24] Liu L H, Yang C, Wang F, et al.Ultrafine grained Ti-based composites with ultrahigh strength and ductility achieved by equiaxing microstructure[J]. Mater. Des., 2015, 79: 1
[25] Li Y H, Yang C, Kang L M, et al.Non-isothermal and isothermal crystallization kinetics and their effect on microstructure of sintered and crystallized TiNbZrTaSi bulk alloys[J]. J. Non-Cryst. Solids, 2016, 432: 440
[26] Yang C, Liu L H, Yao Y G, et al.Intrinsic relationship between crystallization mechanism of metallic glass powder and microstructure of bulk alloys fabricated by powder consolidation and crystallization of amorphous phase[J]. J. Alloys Compd., 2014, 586: 542
[27] Zou L M, Li Y H, Yang C, et al.Effect of Fe content on glass-forming ability and crystallization behavior of a (Ti69.7Nb23.7Zr4.9Ta1.7)100-xFex alloy synthesized by mechanical alloying[J]. J. Alloys Compd., 2013, 553: 40
[28] Li Y H, Yang C, Wang F, et al.Biomedical TiNbZrTaSi alloys designed by d-electron alloy design theory[J]. Mater. Des., 2015, 85: 7
[29] Li Y Y, Zou L M, Yang C, et al.Ultrafine-grained Ti-based composites with high strength and low modulus fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2013, A560: 857
[30] Li Y Y, Yang C, Li X Q, et al.Fabrication of Ti-based composites based on bulk amorphous alloys by spark plasma sintering and crystallization of amorphous phase[J]. Chin. J. Nonferrous Met., 2011, 21: 2305
[30] (李元元, 杨超, 李小强等. 放电等离子烧结-非晶晶化法合成钛基块状非晶复合材料[J]. 中国有色金属学报, 2011, 21: 2305)
[31] Kim K B, Das J, Xu W, et al.Microscopic deformation mechanism of a Ti66.1Nb13.9Ni4.8Cu8Sn7.2 nanostructure-dendrite composite[J]. Acta Mater., 2006, 54: 3701
[32] Li J F, Zhou Y H.Eutectic growth in bulk undercooled melts[J]. Acta Mater., 2005, 53: 2351
[33] Parisi A, Plapp M.Stability of lamellar eutectic growth[J]. Acta Mater., 2008, 56: 1348
[34] Woodcock T G, Kusy M, Mato S, et al.Formation of a metastable eutectic during the solidification of the alloy Ti60Cu14Ni12Sn4Ta10[J]. Acta Mater., 2005, 53: 5141
[35] Lee S W, Kim J T, Hong S H, et al.Micro-to-nano-scale deformation mechanisms of a bimodal ultrafine eutectic composite[J]. Sci. Rep., 2014, 4: 6500
[36] Greenwood M, Hoyt J J, Provatas N.Competition between surface energy and elastic anisotropies in the growth of coherent solid-state dendrites[J]. Acta Mater., 2009, 57: 2613
[37] Das J, Kim K B, Baier F, et al.High-strength Ti-base ultrafine eutectic with enhanced ductility[J]. Appl. Phys. Lett., 2005, 87: 161907
[38] Misra D K, Rakshit R K, Singh M, et al.High yield strength bulk Ti based bimodal ultrafine eutectic composites with enhanced plasticity[J]. Mater. Des., 2014, 58: 551
[1] ZHAO Pingping, SONG Yingwei, DONG Kaihui, HAN En-Hou. Synergistic Effect Mechanism of Different Ions on the Electrochemical Corrosion Behavior of TC4 Titanium Alloy[J]. 金属学报, 2023, 59(7): 939-946.
[2] ZHANG Bin, TIAN Da, SONG Zhuman, ZHANG Guangping. Research Progress in Dwell Fatigue Service Reliability of Titanium Alloys for Pressure Shell of Deep-Sea Submersible[J]. 金属学报, 2023, 59(6): 713-726.
[3] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
[4] ZHU Zhihao, CHEN Zhipeng, LIU Tianyu, ZHANG Shuang, DONG Chuang, WANG Qing. Microstructure and Mechanical Properties of As-Cast Ti-Al-V Alloys with Different Proportion of α / β Clusters[J]. 金属学报, 2023, 59(12): 1581-1589.
[5] WANG Haifeng, ZHANG Zhiming, NIU Yunsong, YANG Yange, DONG Zhihong, ZHU Shenglong, YU Liangmin, WANG Fuhui. Effect of Pre-Oxidation on Microstructure and Wear Resistance of Titanium Alloy by Low Temperature Plasma Oxynitriding[J]. 金属学报, 2023, 59(10): 1355-1364.
[6] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[7] LI Xifeng, LI Tianle, AN Dayong, WU Huiping, CHEN Jieshi, CHEN Jun. Research Progress of Titanium Alloys and Their Diffusion Bonding Fatigue Characteristics[J]. 金属学报, 2022, 58(4): 473-485.
[8] YAN Mengqi, CHEN Liquan, YANG Ping, HUANG Lijun, TONG Jianbo, LI Huanfeng, GUO Pengda. Effect of Hot Deformation Parameters on the Evolution of Microstructure and Texture of β Phase in TC18 Titanium Alloy[J]. 金属学报, 2021, 57(7): 880-890.
[9] DAI Jincai, MIN Xiaohua, ZHOU Kesong, YAO Kai, WANG Weiqiang. Coupling Effect of Pre-Strain Combined with Isothermal Ageing on Mechanical Properties in a Multilayered Ti-10Mo-1Fe/3Fe Alloy[J]. 金属学报, 2021, 57(6): 767-779.
[10] LIU Ze, NING Hanwei, LIN Zhangqian, WANG Dongjun. Influence of Spark Plasma Sintering Parameters on the Microstructure and Room-Temperature Mechanical Properties of NiAl-28Cr-5.5Mo-0.5Zr Alloy[J]. 金属学报, 2021, 57(12): 1579-1587.
[11] LI Jinshan, TANG Bin, FAN Jiangkun, WANG Chuanyun, HUA Ke, ZHANG Mengqi, DAI Jinhua, KOU Hongchao. Deformation Mechanism and Microstructure Control of High Strength Metastable β Titanium Alloy[J]. 金属学报, 2021, 57(11): 1438-1454.
[12] YANG Rui, MA Yingjie, LEI Jiafeng, HU Qingmiao, HUANG Sensen. Toughening High Strength Titanium Alloys Through Fine Tuning Phase Composition and Refining Microstructure[J]. 金属学报, 2021, 57(11): 1455-1470.
[13] LIN Zhangqian, ZHENG Wei, LI Hao, WANG Dongjun. Microstructures and Mechanical Properties of TA15 Titanium Alloy and Graphene Reinforced TA15 Composites Prepared by Spark Plasma Sintering[J]. 金属学报, 2021, 57(1): 111-120.
[14] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[15] KE Linda,YIN Jie,ZHU Haihong,PENG Gangyong,SUN Jingli,CHEN Changpeng,WANG Guoqing,LI Zhongquan,ZENG Xiaoyan. Numerical Simulation of Stress Evolution of Thin-Wall Titanium Parts Fabricated by Selective Laser Melting[J]. 金属学报, 2020, 56(3): 374-384.
No Suggested Reading articles found!