Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (12): 1627-1635    DOI: 10.11900/0412.1961.2017.00218
Orginal Article Current Issue | Archive | Adv Search |
Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test
Jin WANG1, Yuefei ZHANG1(), Jinyao MA1, Jixue LI2, Ze ZHANG2
1 Institute of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing 100124, China
2 Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310058, China
Cite this article: 

Jin WANG, Yuefei ZHANG, Jinyao MA, Jixue LI, Ze ZHANG. Microcrack Nucleation and Propagation Investigation ofInconel 740H Alloy Under In SituHigh Temperature Tensile Test. Acta Metall Sin, 2017, 53(12): 1627-1635.

Download:  HTML  PDF(10394KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As a result of increasing energy demands and accelerated environmental problems, there is an urgent need to improve the thermal efficiency of ultra supercritical (USC) power plants. To achieve this goal, advanced ultra-supercritical (A-USC) technologies with the main steam temperature of 700~750 ℃ and pressure of 35 MPa have been developed quickly in recent years. One of the most promising candidate Ni-based superalloys for the main steam pipe of 700 ℃ ultra-supercritical coal-fired power plants is Inconel 740H, which is a modified version of Inconel 740 developed by Special Metals Corp (SMC). Compared with IN740, the Ti/Al ratio in IN740H is lowered in order to stabilise the microstructure at long ageing times. In addition, the Nb content is lowered to improve the weldability. In this work, the microstructure evolutions, the nucleation and propagation mechanisms of microcracks in the nickel base superalloy Inconel 740H at 750 ℃ high temperature were studied by the self-developed in situ high temperature tensile stage inside a SEM. The results showed that under the uniaxial tensile stress at 22 ℃ room temperature and 750 ℃ high temperature conditions, the grain boundaries of Inconel 740H alloy are always the most primary crack sources. The strength of grain boundaries is higher than that of grains under the room temperature, and the microcracks will be nucleated at the grains as well, but the relative strength of grain boundaries will be weaken under the high temperature, which makes the microcracks tend to nucleate at grain boundaries. The experimental results also showed that the influence of high temperature on the mechanical properties is very significant, the high temperature reducing the activate energy of slip and weakening the strength of the grain boundaries, so that more slip systems activated and the grain boundaries occurring bending and sliding deformation, so further enhance the ability of plastic deformation of alloy. However, the reduction of relative strength of alloy grain boundaries leads to microcracks nucleation and propagation more easily from grain boundaries and lower the yield strength and tensile strength of alloy.

Key words:  Inconel 740H      in situ SEM      high temperature tensile      microcrack nucleation and propagation     
Received:  07 June 2017     
ZTFLH:  TG132.3  
Fund: Supported by National Key Scientific Instrument and Equipment Development Project (No.11327901)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00218     OR     https://www.ams.org.cn/EN/Y2017/V53/I12/1627

Fig.1  Dimensions of an in situ tensile specimen(unit: mm)
Fig.2  In situ high temperature tensile stage (a) and schematic of the cross section of the main working parts (b)
Fig.3  OM image of Inconel 740H alloy after standard heat treatment (a), histogram of grain size (within the observation gauge) (b), SEM images of grain boundaries and twin boundaries (c, d) and SEM images of (NbTi)C and Cr23C6 (e, f) (T—twin, TB—twin boundary)
Fig.4  Force-displacement curves of Inconel 740H alloy at 22 and 750 ℃
Test Yield Ultimate tensile Elongation
temperautre strength strength
MPa MPa %
22 797 1240 31.0
750 761 1132 45.6
Table 1  Mechanical properties of Inconel 740H alloy in situ tensile specimens at 22 and 750 ℃
Fig.5  Evolutions of microcrack nucleation of Inconel 740H alloy at 22 ℃ under 0 N (a), 599 N (b), 628 N (c) and 634 N (d) (SB—slipping band)
Fig.6  Evolutions of microcrack propagation of Inconel 740H alloy at 22 ℃ under 642 N (a), 507 N (b), 459 N (c) and rupture (d) (r1~r4 show the orientations, Ga and Gb show the grains, DB—deformation band)
Fig.7  Evolutions of microcrack nucleation of Inconel 740H alloy at 750 ℃ under 0 N (a), 354 N (b), 612 N (c) and 611 N (d) (Fig.7b is the enlarged view of rectangle area in Fig.7a which shows the location of crack a, and inset in Fig.7b shows the enlarged view of crack a)
Fig.8  Evolutions of microcrack propagation of Inconel 740H alloy at 750 ℃ under 600 N (a), 504 N (b), 472 N (c) and rupture (d)
Fig.9  Schematics of microcrack nucleation and propagation in Inconel 740H alloy at 22 ℃ (a~c) and 750 ℃ (d~f) under uniaxial tensile stress (σ—tension stress, τ—shear stress) (a, d) microcrack nucleation (b, e) microcrack propagation (c, f) crack connection
[1] Patel S J.Introduction to Inconelel alloy 740: An alloy designed for superheater tubing in coal-fired ultra supercritical boilers[J]. Acta Metall. Sin.(Engl. Lett.), 2005, 18: 479
[2] Patel S J, deBarbadillo J J, Baker B A, et al. Nickel base superalloys for next generation coal fired AUSC power plants[J]. Proced. Eng., 2013, 55: 246
[3] Shingledecker J P, Pharr G M.The role of eta phase formation on the creep strength and ductility of INCONEL alloy 740 at 1023 K (750 ℃)[J]. Metall. Mater. Trans., 2012, 43A: 1902
[4] Dang Y Y, Zhao X B, Yuan Y, et al.Predicting long-term creep-rupture property of Inconel 740 and 740H[J]. Mater. High Temp., 2016, 33: 1
[5] Chong Y, Liu Z D, Godfrey A, et al.Detrimental effect of cellular precipitation on the creep strength of Inconel 740H[J]. Phil. Mag. Lett., 2013, 93: 688
[6] Guo Y, Li T J, Wang C X, et al.Microstructure and phase precipitate behavior of Inconel 740H during aging[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1598
[7] Cowen C J, Danielson P E, Jablonski P D.The microstructural evolution of Inconel alloy 740 during solution treatment, aging, and exposure at 760 ℃[J]. J. Mater. Eng. Perform., 2011, 20: 1078
[8] Dang Y Y, Zhao X B, Yin H F, et al.Microstructure stability of Inconel 740H alloy after long term exposure at 750 ℃[J]. J. Mater. Eng., 2016, 44(9): 58(党莹樱, 赵新宝, 尹宏飞等. Inconel 740H合金750 ℃长期时效后的组织稳定性[J]. 材料工程, 2016, 44(9): 58)
[9] Fu R, Lin F S, Zhao S Q, et al.Influence of strengthening elements on precipitation of thermodynamic equilibrium phases in Inconel alloy 740H[J]. J. Chin. Soc. Power Eng., 2013, 33: 405(符锐, 林富生, 赵双群等. Inconel 740H主要强化元素对热力学平衡相析出行为的影响[J]. 动力工程学报, 2013, 33: 405)
[10] Guo Y, Li T J, Wang C X, et al.Microstructure and phase precipitate behavior of Inconel 740H during aging[J]. Trans. Nonferrous. Met. Soc. China, 2016, 26: 1598
[11] Tan Y, Liao J, Li J Y, et al.Microstructure evolution and microhardness of Inconel 740 Alloy in different heat-treatment conditions prepared by electron beam melting[J]. J. Mater. Eng., 2015, 43(4): 19(谭毅, 廖娇, 李佳艳等. 电子束熔炼Inconel 740合金不同热处理状态下的组织演变与显微硬度[J]. 材料工程, 2015, 43(4): 19)
[12] Xie X S, Zhao S Q, Dong J X, et al.Structural stability and improvement of Inconel alloy 740 for ultra supercritical power plants[J]. J. Chin. Soc. Power Eng., 2011, 31: 638(谢锡善, 赵双群, 董建新等. 超超临界电站用Inconel 740镍基合金的组织稳定性及其改型研究[J]. 动力工程学报, 2011, 31: 638)
[13] Zhang H J, Zhou R C, Hou S F, et al.Study on microstructure stability of Inconel 740 for advanced ultra supercritical unit[J]. Proc. CSEE, 2011, 31(8): 108(张红军, 周荣灿, 侯淑芳等. 先进超超临界机组用Inconel 740合金的组织稳定性研究[J]. 中国电机工程学报, 2011, 31(8): 108)
[14] Shingledecker J P, Evans N D, Pharr G M.Influences of composition and grain size on creep-rupture behavior of Inconel? alloy 740[J]. Mater. Sci. Eng., 2013, A578: 277
[15] Kontis P, Alabort E, Barba D, et al.On the role of boron on improving ductility in a new polycrystalline superalloy[J]. Acta Mater., 2017, 124: 489
[16] Di Martino S F, Faulkner R G, Hogg S C. Characterisation of microstructure and creep predictions of alloy IN740 for ultrasupercritical power plants[J]. Mater. Sci. Technol., 2015, 31: 48
[17] Jiang H, Dong J X, Zhang M C, et al.Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170 ℃[J]. Oxid. Met., 2015, 84: 61
[18] Lu J T, Yang Z, Xu S Q, et al.High temperature oxidation behavior of Inconel alloy 740H in pure steam[J]. Mater. Mech. Eng., 2015, 39(10): 37(鲁金涛, 杨珍, 徐松乾等. Inconel 740H合金在纯水蒸气环境中的高温氧化行为[J]. 机械工程材料, 2015, 39(10): 37)
[19] Lu X D, Du J H, Deng Q.In situ observation of high temperature tensile deformation and low cycle fatigue response in a nickel-base superalloy[J]. Mater. Sci. Eng., 2013, A588: 411
[20] Torres E A, Ramírez A J.In situ scanning electron microscopy[J]. Sci. Technol. Weld. Join., 2011, 16: 68
[21] Chakkedath A, Boehlert C J.In situ scanning electron microscopy observations of contraction twinning and double twinning in extruded Mg-1Mn (wt.%)[J]. JOM, 2015, 67: 1748
[22] Mishra R, Kubic R.In situ EBSD of microstructure evolution during deformation[J]. Microsc. Microanal., 2008, 14(suppl.2): 552
[23] Tarzimoghadam Z, Ponge D, Kl?wer J, et al.Hydrogen-assisted failure in Ni-based superalloy 718 studied under in situ hydrogen charging: The role of localized deformation in crack propagation[J]. Acta Mater., 2017, 128: 365
[24] Lischewski I, Kirch D M, Ziemons A, et al.Investigation of the α-γ-α phase transformation in steel: High-temperature in situ EBSD measurements[J]. Texture Stress Microstruct., 2008, 2008: 294508
[25] Summers W D, Alabort E, Kontis P, et al.In-situ high-temperature tensile testing of a polycrystalline nickel-based superalloy[J]. Mater. High Temp., 2016, 33: 338
[1] Jinyao MA,Jin WANG,Yunsong ZHAO,Jian ZHANG,Yuefei ZHANG,Jixue LI,Ze ZHANG. Investigation of In Situ 1150 High Temperature Deformation Behavior and Fracture Mechanism of a Second Generation Single Crystal Superalloy[J]. 金属学报, 2019, 55(8): 987-996.
[2] YUAN Chao; GUO Jianting; YANG Hongcai; WANG Shuhe( Institute of Metal Research; The Chinese Academy of Sciences; Shenyang 110015 School of Materials Science and Metallurgy; Northeastern University; Shenyang 110006)Correspondent. Guo Jianting; professor Tel: 25843531-55493; Fax: (024)23891320;E-mail: jtguo .imr.ac.cn. HIGH TEMPERATURE CREEP OF A DIRECTIONALLY SOLIDIFIED Ni-BASE SUPERALLOY[J]. 金属学报, 1998, 34(8): 858-863.
No Suggested Reading articles found!