Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1265-1283    DOI: 10.11900/0412.1961.2017.00263
Orginal Article Current Issue | Archive | Adv Search |
Preparation and Research Progress of Contact-Induced Surface of Metal Implants
Chunyong LIANG1,2(), Jingzu HAO1, Hongshui WANG1, Baoe LI1, Dan XIA2
1 College of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, China
2 Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, Tianjin 300130, China
Cite this article: 

Chunyong LIANG, Jingzu HAO, Hongshui WANG, Baoe LI, Dan XIA. Preparation and Research Progress of Contact-Induced Surface of Metal Implants. Acta Metall Sin, 2017, 53(10): 1265-1283.

Download:  HTML  PDF(8368KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metal materials are one of the main application materials of medical implants. Due to the objective existence of the defects, such as ion dissolution and biologically inert, how to improve the biocompatibility and tissue suitability of the implant surface has attracted great research interests. Fabricating micro-nano structures on surfaces, which regulates the cell and tissue by the contact-induced mechanism is one of the most important research direction to improve the surface biological function of implantation device. In this paper, the preparation techniques and application progress of various microstructures on metal implanted devices surface were reviewed. In addition, the effects of contact induction on the regulation of osteogenesis to vascular endothelial cells, to tissue growth behavior and induction of stem cell differentiation were also reviewed.

Key words:  metal implant      micro-nanostructure      contact-induction      biocompatibility     
Received:  03 July 2017     
ZTFLH:  TB34  
Fund: Supported by National Natural Science Foundation of China (No.31600753), Outstanding Youth Foundation of Hebei Province (No.E2015202282), Natural Science Foundation of Hebei Province (Nos.C2017202206 and E2017202032) and Natural Science Foundation of Tianjin (Nos.16JCYBJC43400 and 15JCYBJC29900)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00263     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1265

Fig.1  Timeline of the conduct-induction research[1-6]
Preparation method of contact-induced
surface
Metallic medical material Structural feature
Application effect
Application example
Mechanical grinding

Titanium and its alloy
Scratch structure of different scales[7-9]
Surface roughness increases, enforce the attachment of osteoblasts, induce to differentiate unidirectionally Cell cultures experiments
Acid etching
Titanium and its alloy Micron level structure: groove/ridge-valley/cellular[10-22] Surface roughness increases, water contact angle decreases, promote osteointegration Early implant
Sandblasting
Titanium and its alloy, alumina ceramics Irregular deformation in micrometer size[23-31] Surface roughness increases, promote osteointegration Core-vent/Tubingen/Ankylos/Frialit-2 dental implant
SLA-etched
Titanium and its alloy Irregular corrosion morphology in micrometer size[32-42,122,123] Surface roughness increases, water contact angle decreases ITI/Anthogyr dental implant
Anodic oxidation

Titanium and its alloy
Nanotube/nano pore arrays[43-58,124-127]
Water contact angle decreases, promote proliferation of osteoblast, promote osteointegration Dental/femoral implant test in vivo
Micro-arc oxidation

Titanium and its alloy
Porous structure in micrometer/sub micrometer size[59-93] Surface roughness increases, water contact angle decreases, active components loaded
in situ
Dental/femoral implant test in vivo
Electron beam
etching
Stainless
steel
Crater structure[94-97] Improve blood
compatibility
Ion etching Titanium Nano sized folded structures[98-102] Adjust wettability, promote osteointegration Dental implant test in vivo
Laser etching

Stainless steel,
titanium and its alloy
Micron sized parallel striations/island structure, multi-structural compound[103-121] Cells grow unidirectionally/selectively surface roughness increases, adjust water contact angle Dental implant test in vivo, heart and brain vascular stent
Table 1  Preparation methods of contact-induced surface of metallic medical intervention materials[7-127]
Fig.2  The surfaces patterns fabricated by mechanical grinding (a)[26], acid etching treatment (b)[33], sandblasting(c)[26] and SLA-etched (d)[34] treatments
Fig.3  Different nano-structures on metal surfaces processed by anodic oxidation method; including kinds of tubes (a[53], b[54], d[128], f[128]) and pores (c[128], e[128])
Fig.4  Surface morphologies of titanium treated by micro-arc oxidation
(a, b) titanium oxide surface[136]
(c, d) titanium surface after the introduction of calcium and phosphorus in electrolyte[64]
Fig.5  Femtosecond laser-induced collagen deposition[117]
(a) the "中" character processed by femtosecond laser
(b) immunofluorescence color of Collagen
(c) the microstructure of collagen induced by femtosecond laser
Fig.6  The contact-induction of the Osteoblast by different sizes of ion etching structure; the patterns periods are 1000 nm (a), 300 nm (b) and 200 nm (c) (Arrows indicate the groove directions)[174]
Fig.7  Low (a~c) and high (d~f) magnified hierarchical structures prepared by femtosecond laser technology on Ti alloy surface under femtosecond laser fluxs of 1.27 J/cm2 (a, d), 2.55 J/cm2 (b, e) and 3.82 J/cm2 (c, f)[6]
Fig.8  The surface structure of the vascular smooth muscle cell (VSMC) (a) and the corresponding surface pattern machined by femtosecond laser (c), and the line profiles of the white dash lines in Fig.8a (b) and Fig.8c (d), respectively[160]
Fig.9  The response of stem cells to different structural surfaces[203]
[1] Harrison R G.The reaction of embryonic cells to solid structures[J]. J. Exp. Zool., 1914, 17A: 521
[2] Weiss P.Experiments on cell and axon orientation in vitro: The role of colloidal exudates in tissue organization[J]. J. Exp. Zool., 1945, 100A: 353
[3] Curtis A S G, Varde M. Control of cell behavior: Topological factors[J]. J. Natl. Cancer. Inst., 1964, 33: 15
[4] Clark P, Connolly P, Curtis A S G, et al. Topographical control of cell behaviour: II. Multiple grooved substrata[J]. Development, 1990, 108: 635
[5] Wójciak-Stothard B, Curtis A, Monaghan W, et al.Guidance and activation of murine macrophages by nanometric scale topography[J]. Exp. Cell Res., 1996, 223: 426
[6] Liang C Y, Wang H S, Yang J J, et al.Biocompatibility of the micro-patterned NiTi surface produced by femtosecond laser[J]. Appl. Surf. Sci., 2012, 261: 337
[7] Deligianni D D, Katsala N, Ladas S, et al.Effect of surface roughness of the titanium alloy Ti-6Al-4V on human bone marrow cell response and on protein adsorption[J]. Biomaterials, 2001, 22: 1241
[8] Huang H H, Ho C T, Lee T H, et al.Effect of surface roughness of ground titanium on initial cell adhesion[J]. Biomol. Eng., 2004, 21: 93
[9] Brunette D M.The effects of implant surface topography on the behavior of cells[J]. Int. J. Oral Maxillofac. Implants, 1988, 3: 231
[10] Li B E, Wang X L, Min Y, et al.Corrosion resistance and mechanical properties of titanium with hierarchical micro-nanostructure[J]. Mater. Lett., 2016, 182: 43
[11] Kang M K, Moon S K, Kwon J S, et al.Antibacterial effect of sand blasted, large-grit, acid-etched treated Ti-Ag alloys[J]. Mater. Res. Bull., 2012, 47: 2952
[12] Takeuchi M, Abe Y, Yoshida Y, et al.Acid pretreatment of titanium implants[J]. Biomaterials, 2003, 24: 1821
[13] R?nold H J, Lyngstadaas S P, Ellingsen J E.Analysing the optimal value for titanium implant roughness in bone attachment using a tensile test[J]. Biomaterials, 2003, 24: 4559
[14] Park J Y, Gemmell C H, Davies J E.Platelet interactions with titanium: Modulation of platelet activity by surface topography[J]. Biomaterials, 2001, 22: 2671
[15] Zhang J, Xie Y N, Zuo J, et al.Cell responses to titanium treated by a sandblast-free method for implant applications[J]. Mater. Sci. Eng., 2017, C78: 1187
[16] Klokkevold P R, Johnson P, Dadgostari S, et al.Early endosseous integration enhanced by dual acid etching of titanium: A torque removal study in the rabbit[J]. Clin. Oral Implants Res., 2001, 12: 350
[17] Abrahamsson I, Zitzmann N U, Berglundh T, et al.Bone and soft tissue integration to titanium implants with different surface topography: An experimental study in the dog[J]. Int. J. Oral Maxillofac. Implants, 2001, 16: 323
[18] Daugaard H, Elmengaard B, Bechtold J E, et al.Bone growth enhancement in vivo on press-fit titanium alloy implants with acid etched microtexture[J]. J. Biomed. Mater. Res., 2008, 87A: 434
[19] Balloni S, Calvi E M, Damiani F, et al.Effects of titanium surface roughness on mesenchymal stem cell commitment and differentiation signaling[J]. Int. J. Oral Maxillofac. Implants, 2009, 24: 627
[20] Hao J Z, Li Y, Li B E, et al.Biological and mechanical effects of micro-nanostructured titanium surface on an osteoblastic cell line in vitro and osteointegration in vivo[J]. Appl. Biochem. Biotechnol., 2017, 183: 280
[21] Lamolle S F, Monjo M, Rubert M, et al.The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells[J]. Biomaterials, 2009, 30: 736
[22] Méndez-Vilas A, Bruque J M, González-Martín M L. Sensitivity of surface roughness parameters to changes in the density of scanning points in multi-scale AFM studies. Application to a biomaterial surface[J]. Ultramicroscopy, 2007, 107: 617
[23] Wennerberg A, Albrektsson T, Johansson C, et al.Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography[J]. Biomaterials, 1996, 17: 15
[24] Multigner M, Frutos E, Mera C L, et al.Interrogations on the sub-surface strain hardening of grit blasted Ti-6Al-4V alloy[J]. Surf. Coat. Technol., 2009, 203: 2036
[25] Bowers K T, Keller J C, Randolph B A, et al.Optimization of surface micromorphology for enhanced osteoblast responses in vitro[J]. Int. J. Oral Maxillofac. Implants, 1992, 7: 302
[26] Wennerberg A, Albrektsson T, Lausmaa J.Torque and histomorphometric evaluation of c.p. titanium screws blasted with 25- and 75-μm-sized particles of Al2O3[J]. J. Biomed. Mater. Res., 1996, 30A: 251
[27] Lu B Q, Wang D S, Xu J C.Clinical application of column sand blasting surface titanium implants in 10 cases[J]. Acta Acad. Med. Bengbu, 1997, 22(1): 37(卢保全, 王德顺, 徐锦程. 柱状喷砂面钛种植体临床应用10例[J]. 蚌埠医学院学报, 1997, 22(1): 37)
[28] Kim H H, Kim M R, Kim S J.Comparison of gene-expression of MC3T3-E1 osteoblast cell cultured on resorbable blast medium, sandblasted with hydroxyapatite surface and machined surface[J]. Tissue Eng. Regen. Med., 2009, 6: 533
[29] Larsson C, Thomsen P, Aronsson B O, et al.Bone response to surface-modified titanium implants: Studies on the early tissue response to machined and electropolished implants with different oxide thicknesses[J]. Biomaterials, 1996, 17: 605
[30] Bagherifard S, Hickey D J, de Luca A C, et al. The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel[J]. Biomaterials, 2015, 73: 185
[31] Lieblich M, Barriuso S, Multigner M, et al.Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: Effects on the microstructure, residual stresses and mechanical properties[J]. J. Mech. Behav. Biomed. Mater., 2016, 54: 173
[32] Rupp F, Scheideler L, Rehbein D, et al.Roughness induced dynamic changes of wettability of acid etched titanium implant modifications[J]. Biomaterials, 2004, 25: 1429
[33] Szmukler-Moncler S, Perrin D, Ahossi V, et al.Biological properties of acid etched titanium implants: Effect of sandblasting on bone anchorage[J]. J. Biomed. Mater. Res., 2004, 68B: 149
[34] Chiang H J, Hsu H J, Peng P W, et al.Early bone response to machined, sandblasting acid etching (SLA) and novel surface-functionalization (SLAffinity) titanium implants: Characterization, biomechanical analysis and histological evaluation in pigs[J]. J. Biomed. Mater. Res., 2016, 104A: 397
[35] Herrero-Climent M, Lázaro P, Vicente Rios J, et al.Influence of acid-etching after grit-blasted on osseointegration of titanium dental implants: In vitro and in vivo studies[J]. J. Mater. Sci. Mater. Med., 2013, 24: 2047
[36] Li D H, Liu B L, Zou J C, et al.Effects of modified sandblasted surface on the osseointegration of ttanium dental implants[J]. J. Pract. Stomatol., 1999, 15: 431(李德华, 刘宝林, 邹敬才等. 改良喷砂表面处理对钛牙种植体骨结合的组织学作用[J]. 实用口腔医学杂志, 1999, 15: 431)
[37] Lai C H.The study on contact osteogenesis of a sandblasted and acid-etached titanium implant in animal model [D]. Guangzhou: Southern Medical University, 2014(赖春花. 喷砂酸蚀钛种植体表面接触成骨现象及其影响因素的动物学实验研究 [D]. 广州: 南方医科大学, 2014)
[38] Kang N W, Jung U W, Choi S H, et al.Bone added osteotome sinus floor elevation with simultaneous placement of branemark Ti-unite and ITI SLA implants[J]. J. Korean Acad. Periodontol., 2005, 35: 609
[39] Cooper L F, Zhou Y S, Takebe J, et al.Fluoride modification effects on osteoblast behavior and bone formation at TiO2 grit-blasted c.p. titanium endosseous implants[J]. Biomaterials, 2006, 27: 926
[40] Li S B, Ni J, Liu X N, et al.Surface characteristics and biocompatibility of sandblasted and acid-etched titanium surface modified by ultraviolet irradiation: An in vitro study[J]. J. Biomed. Mater. Res., 2012, 100B: 1587
[41] Martin J Y, Schwartz Z, Hummert T W, et al.Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63)[J]. J. Biomed. Mater. Res., 1995, 29: 389
[42] Méndez-Vilas A, Donoso M G, González-Carrasco J L, et al. Looking at the micro-topography of polished and blasted Ti-based biomaterials using atomic force microscopy and contact angle goniometry[J]. Colloids Surf., 2006, 52B: 157
[43] Farzad N, Iman Y, Elnaz M, et al.Tuning surface morphology and crystallinity of anodic TiO2 nanotubes and their response to biomimetic bone growth for implant applications[J]. Surf. Coat. Technol., 2017, 315: 163
[44] Eisenbarth E, Velten D, Schenk-Meuser K, et al.Interactions between cells and titanium surfaces[J]. Biomol. Eng., 2002, 19: 243
[45] Li Y, Li B E, Fu X L.Anodic oxidation modification improve bioactivity and biocompatibility of titanium implant surface[J]. J. Hard Tissue Biol., 2013, 22: 351
[46] Li B E, Li Y, Li J, et al.Improvement of biological properties of titanium by anodic oxidation and ultraviolet irradiation[J]. Appl. Surf. Sci., 2014, 307: 202
[47] Macak J M, Sirotna K, Schmuki P.Self-organized porous titanium oxide prepared in Na2SO4/NaF electrolytes[J]. Electrochim. Acta, 2005, 50: 3679
[48] Sieber I V, Schmuki P.Porous tantalum oxide prepared by electrochemical anodic oxidation[J]. J. Electrochem. Soc., 2005, 152: C639
[49] Tsuchiya H, Schmuki P.Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization[J]. Electrochem. Commun., 2005, 7: 49
[50] Li B E, Li Y, Li J, et al.Influence of nanostructures on the biological properties of Ti implants after anodic oxidation[J]. J. Mater. Sci. Mater. Med., 2014, 25: 199
[51] Cai Q Y, Paulose M, Varghese O K, et al.The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. J. Mater. Res., 2005, 20: 230
[52] Kuang D B, Brillet J, Chen P, et al.Application of highly ordered TiO2 nanotube arrays in flexible dye-sensitized solar cells[J]. ACS Nano, 2008, 2: 1113
[53] Grimes C A.Synthesis and application of highly ordered arrays of TiO2 nanotubes[J]. J. Mater. Chem., 2007, 17: 1451
[54] Albu S P, Ghicov A, Aldabergenova S, et al.Formation of double-walled TiO2 nanotubes and robust anatase membranes[J]. Adv. Mater., 2008, 20: 4135
[55] Beutner R, Michael J, F?rster A, et al.Immobilization of oligonucleotides on titanium based materials by partial incorporation in anodic oxide layers[J]. Biomaterials, 2009, 30: 2774
[56] Gong D W, Grimes C A, Varghese O K, et al.Titanium oxide nanotube arrays prepared by anodic oxidation[J]. J. Mater. Res., 2001, 16: 3331
[57] Popat K C, Eltgroth M, Latempa T J, et al.Decreased staphylococcus epidermis adhesion and increased osteoblast functionality on antibiotic-loaded titania nanotubes[J]. Biomaterials, 2007, 28: 4880
[58] Zinger O, Anselme K, Denzer A, et al.Time-dependent morphology and adhesion of osteoblastic cells on titanium model surfaces featuring scale-resolved topography[J]. Biomaterials, 2004, 25: 2695
[59] Wang H R, Liu F, Zhang Y P, et al.Preparation and properties of titanium oxide film on NiTi alloy by micro-arc oxidation[J]. Appl. Surf. Sci., 2011, 257: 5576
[60] Joanna K, Faiz M, Grzegorz C, et al.Influence of electrolyte composition on microstructure, adhesion and bioactivity of micro-arc oxidation coatings produced on biomedical Ti6Al7Nb alloy[J]. Surf. Coat. Technol., 2017, 321: 97
[61] Zhao G L, Li X, Xia L, et al.Structure and apatite induction of a microarc-oxidized coating on a biomedical titanium alloy[J]. Appl. Surf. Sci., 2010, 257: 1762
[62] Yu S, Yu Z T, Wang G, et al.Preparation and osteoinduction of active micro-arc oxidation films on Ti-3Zr-2Sn-3Mo-25Nb alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 573
[63] Liu S M, Liang C Y, Wang H S, et al.Mineralization behavior of the petal-like apatite/TiO2 composite coating prepared by micro-arc oxidation[J]. Int. J. Electrochem. Sci., 2012, 7: 12922
[64] Liu S M, Li B E, Liang C Y, et al.Formation mechanism and adhe sive strength of a hydroxyapatite/TiO2 composite coating on a titanium surface prepared by micro-arc oxidation[J]. Appl. Surf. Sci., 2016, 362: 109
[65] Li L H, Kong Y M, Kim H W, et al.Improved biological performance of Ti implants due to surface modification by micro-arc oxidation[J]. Biomaterials, 2004, 25: 2867
[66] Dong Q, Chen C Z, Wang D G, et al.Preparation and microstructure of thin TiO2 films containing Ca and P using micro-arc oxidation[J]. Surf. Rev. Lett., 2005, 12: 555
[67] Nan K H, Pei G X. Mineralization behavior of bioactive ceramic coatings formed by micro-arc oxidation on titanium [J]. Key Eng. Mater., 2007, 330-332: 629
[68] Yu S R, Yang X Z, Yang L, et al.Novel technique for preparing Ca- and P-containing ceramic coating on Ti-6Al-4V by micro-arc oxidation[J]. J. Biomed. Mater. Res., 2007, 83B: 623
[69] Kim M S, Ryu J J, Sung Y M.One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation[J]. Electrochem. Commun., 2007, 9: 1886
[70] Hsieh S F, Ou S F, Chou C K.The influence of the substrate on the adhesive strength of the micro-arc oxidation coating developed on TiNi shape memory alloy[J]. Appl. Surf. Sci., 2017, 392: 581
[71] Wang J H, Wang J, Lu Y, et al.Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy[J]. Appl. Surf. Sci., 2015, 324: 405
[72] Ma Q, Wang Y J, Ning C Y, et al. Bioactive porous film produced on titanium substrate by micro-arc oxidation [J]. Key Eng. Mater., 2008, 368-372: 1201
[73] Ni J H, Shi Y L, Yan F Y, et al.Preparation of hydroxyapatite-containing titania coating on titanium substrate by micro-arc oxidation[J]. Mater. Res. Bull., 2008, 43: 45
[74] Ryu H S, Song W H, Hong S H.Biomimetic apatite induction of P-containing titania formed by micro-arc oxidation before and after hydrothermal treatment[J]. Surf. Coat. Technol., 2008, 202: 1853
[75] Wei D Q, Zhou Y, Jia D C, et al.Formation of CaTiO3/TiO2 composite coating on titanium alloy for biomedical applications[J]. J. Biomed. Mater. Res., 2008, 84B: 444
[76] Farnoush H, Muhaffel F, Cimenoglu H.Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates[J]. Appl. Surf. Sci., 2015, 324: 765
[77] dos Santos A, Lidizio L R, da Cruz T S, et al. Influence of electrolyte composition and time deposition on TiO2 films produced by micro-arc oxidation [J]. Key Eng. Mater., 2009, 396-398: 349
[78] Tsai M T, Chang Y Y, Huang H L, et al.Micro-arc oxidation treatment enhanced the biological performance of human osteosarcoma cell line and human skin fibroblasts cultured on titanium-zirconium films[J]. Surf. Coat. Technol., 2016, 303: 268
[79] Terleeva O P, Sharkeev Y P, Slonova A I, et al.Effect of microplasma modes and electrolyte composition on micro-arc oxidation coatings on titanium for medical applications[J]. Surf. Coat. Technol., 2010, 205: 1723
[80] Li J X, Wu G F, Jiang J, et al.Surface characteristics and bioactivity of oxide films with haloid ions formed by micro-arc oxidation on titanium in vitro[J]. Mater. Manufact. Process., 2011, 26: 188
[81] Wang Y, Yu H J, Chen C Z, et al.Review of the biocompatibility of micro-arc oxidation coated titanium alloys[J]. Mater. Des., 2015, 85: 640
[82] Zhang Z X, Sun J Y, Hu H J, et al.Osteoblast-like cell adhesion on porous silicon-incorporated TiO2 coating prepared by micro-arc oxidation[J]. J. Biomed. Mater. Res., 2011, 97B: 224
[83] de Souza G B, de Lima G G, Kuromoto N K, et al. Tribo-mechanical characterization of rough, porous and bioactive Ti anodic layers[J]. J. Mechan. Behav. Biomed. Mater., 2011, 4: 796
[84] Jr E S, Souza G B, Serbena F C, et al.Effect of anodizing time on the mechanical properties of porous titania coatings formed by micro-arc oxidation[J]. Surf. Coat. Technol., 2017, 309: 203
[85] Hu H J, Liu X Y, Meng F H, et al.Formation and bioactivity of porous and nanostructured TiO2/β-TCP coating on titanium[J]. J. Nanosci. Nanotechnol., 2011, 11: 10913
[86] Campanelli L C, Duarte L T, Silva P S C P, et al. Fatigue behavior of modified surface of Ti-6Al-7Nb and CP-Ti by micro-arc oxidation[J]. Mater. Des., 2014, 64: 393
[87] Dicu M M, Abrudeanu M, Moga S, et al.Preparation of ceramic coatings on titanium formed by micro-arc oxidation method for biomedical application[J]. J. Optoelectron. Adv. Mater., 2012, 14: 125
[88] Kung K C, Yuan K, Lee T M, et al.Effect of heat treatment on microstructures and mechanical behavior of porous Sr-Ca-P coatings on titanium[J]. J. Alloys Compd., 2012, 515: 68
[89] Shokouhfar M, Allahkaram S R.Formation mechanism and surface characterization of ceramic composite coatings on pure titanium prepared by micro-arc oxidation in electrolytes containing nanoparticles[J]. Surf. Coat. Technol., 2016, 291: 396
[90] Liu Z F, Wang W Q, Liu H Y, et al.Formation and characterization of titania coatings with cortex-like slots formed on Ti by micro-arc oxidation treatment[J]. Appl. Surf. Sci., 2013, 266: 250
[91] Zhu X L, Chen J, Scheideler L, et al.Effects of topography and composition of titanium surface oxides on osteoblast responses[J]. Biomaterials, 2004, 25: 4087
[92] Moskalewicz T, Kruk A, Kot M, et al.Characterization of microporous oxide layer synthesized on Ti-6Al-7Nb alloy by micro-arc oxidation[J]. Arch. Civ. Mech. Eng., 2014, 14: 370
[93] Shokouhfar M, Allahkaram S R.Effect of incorporation of nanoparticles with different composition on wear and corrosion behavior of ceramic coatings developed on pure titanium by micro arc oxidation[J]. Surf. Coat. Technol., 2017, 309: 767
[94] Zhang K M.Biomedical materials modification by high current pulsed electron beam [D]. Dalian: Dalian University of Technology, 2006(张可敏. 医用金属材料的强流脉冲电子束表面改性研究 [D]. 大连: 大连理工大学, 2006)
[95] Lin Y Z.Modification of biomedical stainless steel by high current pulsed electron beam [D]. Shenzhen: Shenzhen University, 2015(林奕桢. 医用不锈钢表面强流脉冲电子束改性实验研究 [D]. 深圳: 深圳大学, 2015)
[96] Zhang K M, Yang D Z, Zou J X, et al.Surface modification of 316L stainless steel by high current pulsed electron beam: I. Selective purification of surface and its mechanism[J]. Acta Metall. Sin., 2007, 43: 64(张可敏, 杨大智, 邹建新等. 316L不锈钢强流脉冲电子束表面改性研究: I. 表面选择净化及机理[J]. 金属学报, 2007, 43: 64)
[97] Zhang K M, Yang D Z, Zou J X, et al.Surface modification of 316L stainless steel by high current pulsed electron beam: II. Corrosion behaviors in the simulated body fluid[J]. Acta Metall. Sin., 2007, 43: 71(张可敏, 杨大智, 邹建新等. 316L不锈钢强流脉冲电子束表面改性研究: II. 在模拟体液中的腐蚀行为[J]. 金属学报, 2007, 43: 71)
[98] Chu P K, Chen J Y, Wang L P, et al.Plasma-surface modification of biomaterials[J]. Mater. Sci. Eng., 2002, R36: 143
[99] Moon B S, Kim S, Kim H E, et al.Hierarchical micro-nano structured Ti6Al4V surface topography via two-step etching process for enhanced hydrophilicity and osteoblastic responses[J]. Mater. Sci. Eng., 2017, C73: 90
[100] Riedel N A, Bechara S L, Popat K C, et al.Ion etching for sharp tip features on titanium and the response of cells to these surfaces[J]. Mater. Lett., 2012, 81: 158
[101] Riedel N A, Smith B S, Williams J D, et al.Improved thrombogenicity on oxygen etched Ti6Al4V surfaces[J]. Mater. Sci. Eng., 2012, C32: 1196
[102] Riedel N A, Williams J D, Popat K C.Ion beam etching titanium for enhanced osteoblast response[J]. J. Mater. Sci., 2011, 46: 6087
[103] Ye X, Shao Y L, Zhou M, et al.Research on micro-structure and hemo-compatibility of the artificial heart valve surface[J]. Appl. Surf. Sci., 2009, 255: 6686
[104] Bandyopadhyay A, Balla V K, Roy M, et al.Laser surface modification of metallic biomaterials[J]. JOM, 2011, 63(6): 94
[105] Wang J C, Guo C L.Formation of extraordinarily uniform periodic structures on metals induced by femtosecond laser pulses[J]. J. Appl. Phys., 2006, 100: 023511
[106] Young J F, Preston J S, van Driel H M, et al. Laser-induced periodic surface structure. II. Experiments on Ge, Si, Al, and brass[J]. Phys. Rev., 1983, 27B: 1155
[107] Mirhosseini N, Crouse P L, Schmidth M J J, et al. Laser surface micro-texturing of Ti-6Al-4V substrates for improved cell integration[J]. Appl. Surf. Sci., 2007, 253: 7738
[108] Srinivasan R, Braren B.Ultraviolet laser ablation of organic polymers[J]. Chem. Rev., 1989, 89: 1303
[109] Heinrich A, Dengler K, Koerner T, et al.Laser-modified titanium implants for improved cell adhesion[J]. Lasers Med. Sci., 2008, 23: 55
[110] Gaggl A, Schultes G, Müller W D, et al.Scanning electron microscopical analysis of laser-treated titanium implant surfaces—A comparative study[J]. Biomaterials, 2000, 21: 1067
[111] Pet? G, Karacs A, Pászti Z, et al.Surface treatment of screw shaped titanium dental implants by high intensity laser pulses[J]. Appl. Surf. Sci., 2002, 186: 7
[112] Karacs A, Fancsaly A J, Divinyi T, et al.Morphological and animal study of titanium dental implant surface induced by blasting and high intensity pulsed Nd-glass laser[J]. Mater. Sci. Eng., 2003, C23: 431
[113] Liang C Y, Li B F, Wang H S, et al.Femtosecond lasers induced micropatterns on magnesium alloy to promote cell proliferation[J]. Rare Met. Mater. Eng., 2014, 43(S1): 253(梁春永, 李宝发, 王洪水等. 镁合金表面飞秒激光制备促骨细胞生长显微结构[J]. 稀有金属材料与工程, 2014, 43(S1): 253)
[114] Oberringer M, Akman E, Lee J, et al.Reduced myofibroblast differentiation on femtosecond laser treated 316LS stainless steel[J]. Mater. Sci. Eng., 2013, C33: 901
[115] Liang C Y, Li B F, Wang H S, et al.Preparation of hydrophobic and oleophilic surface of 316 L stainless steel by femtosecond laser irradiation in water[J]. J. Dispers. Sci. Technol., 2014, 35: 1345
[116] Liang C Y, Wang H S, Yang J J, et al.Femtosecond laser-induced micropattern and Ca/P deposition on Ti implant surface and its acceleration on early osseointegration[J]. ACS Appl. Mater. Interfaces, 2013, 5: 8179
[117] Liang C Y, Zhong X, Wang H S, et al.Femtosecond laser induced micropatterns and in-situ deposition of Ca/P phase and collagen on Ti surface[J]. Mater. Chem. Phys., 2015, 158: 115
[118] Bizi-Bandoki P, Valette S, Audouard E, et al.Effect of stationary femtosecond laser irradiation on substructures' formation on a mold stainless steel surface[J]. Appl. Surf. Sci., 2013, 270: 197
[119] Wang H S, Liang C Y, Yang Y, et al.Bioactivities of a Ti surface ablated with a femtosecond laser through SBF[J]. Biomed. Mater., 2010, 5: 054115
[120] Symietz C, Lehmann E, Gildenhaar R, et al.Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material[J]. Acta Biomater., 2010, 6: 3318
[121] Joób-Fancsaly A, Divinyi T, Fazekas A, et al.Surface treatment of dental implants with high-energy laser beam[J]. Fogorv. Sz., 2000, 93: 169
[122] Sun S J.Construction of roughness treatment to pure titanium implant surface and its topography analysis [D]. Shijiazhuang: Hebei Medical University, 2008(孙士军. 纯钛种植体粗化表面的构建及形貌分析 [D]. 石家庄: 河北医科大学, 2008)
[123] Geng S N, Sun J S, Guo L Y.Effect of sandblasting and subsequent acid pickling and passivation on the microstructure and corrosion behavior of 316L stainless steel[J]. Mater. Des., 2015, 88: 1
[124] Matsushita Electric Industrial Co., Ltd. Method for anodic oxidation of titanium and its alloys [P]. US Pat, US3502552-A, 1970
[125] Titov P L, Schegoleva S A, Kondrikov N B.Analysis of titanium oxide nanotubes system formation current[J]. Phys. Procedia, 2017, 86: 44
[126] Kondrikov N B, Titov P L, Schegoleva S A, et al.Influence of formation conditions on the level of arrays ordering of anodic titanium oxide nanotubes[J]. Phys. Procedia, 2017, 86: 37
[127] Prosini P P, Cento C, Pozio A.Electrochemical characterization of titanium oxide nanotubes[J]. Electrochim. Acta, 2013, 111: 120
[128] Qian S.Preparation and biological properties of titania based nano films [D]. Shanghai: Shanghai Institute of Ceramics, Chinese Academy of Sciences, 2013(钱仕. 氧化钛基纳米薄膜制备及生物学性能研究 [D]. 上海: 中国科学院上海硅酸盐研究所, 2013)
[129] Oh S H, Fin?nes R R, Daraio C, et al.Growth of nano-scale hydroxyapatite using chemically treated titanium oxide nanotubes[J]. Biomaterials, 2005, 26: 4938
[130] Popat K C, Leoni L, Grimes C A, et al.Influence of engineered titania nanotubular surfaces on bone cells[J]. Biomaterials, 2007, 28: 3188
[131] Yu W Q, Jiang X Q, Zhang F Q, et al.The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation[J]. J. Biomed. Mater. Res., 2010, 94A: 1012
[132] Brammer K S, Oh S, Cobb C J, et al.Improved bone-forming functionality on diameter-controlled TiO2 nanotube surface[J]. Acta Biomater., 2009, 5: 3215
[133] Bjursten L M, Rasmusson L, Oh S, et al.Titanium dioxide nanotubes enhance bone bonding in vivo[J]. J. Biomed. Mater. Res., 2010, 92A: 1218
[134] von Wilmowsky C, Bauer S, Lutz R, et al. In vivo evaluation of anodic TiO2 nanotubes: An experimental study in the pig[J]. J. Biomed. Mater. Res., 2009, 89B: 165
[135] Wang N, Li H Y, Lü W L, et al.Effects of TiO2 nanotubes with different diameters on gene expression and osseointegration of implants in minipigs[J]. Biomaterials, 2011, 32: 6900
[136] Liu S M.Preparation and evaluation of micro-arc oxidation coating on titanium [D]. Tianjin: Tianjin University, 2010(刘世敏. 钛表面微弧氧化层的制备及评价 [D]. 天津: 天津大学, 2010)
[137] Liu F, Wang F P, Shimizu T, et al.Formation of hydroxyapatite on Ti-6Al-4V alloy by microarc oxidation and hydrothermal treatment[J]. Surf. Coat. Technol., 2005, 199: 220
[138] Chen J Z, Shi Y L, Wang L, et al.Preparation and properties of hydroxyapatite-containing titania coating by micro-arc oxidation[J]. Mater. Lett., 2006, 60: 2538
[139] Lima G G, Souza G B, Lepienski C M, et al.Mechanical properties of anodic titanium films containing ions of Ca and P submitted to heat and hydrothermal treatment[J]. J Mecha. Behav. Biomed. Mater., 2016, 64: 18
[140] Liu F, Wang H R, Chen X Q, et al.Formation of HA/Al2O3 composite coating on NiTi alloy by micro-arc oxidation and hydrothermal treatment[J]. J. Ceram. Soc. Jpn., 2012, 120: 548
[141] Yu S, Yu Z T, Wang G, et al.Biocompatibility and osteoconduction of active porous calcium-phosphate films on a novel Ti-3Zr-2Sn-3Mo-25Nb biomedical alloy[J]. Colloids Surf., 2011, 85B: 103
[142] Song W H, Ryu H S, Hong S H.Antibacterial properties of Ag (or Pt)-containing calcium phosphate coatings formed by micro-arc oxidation[J]. J. Biomed. Mater. Res., 2009, 88A: 246
[143] Li B E, Hao J Z, Min Y, et al.Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method[J]. Mater. Sci. Eng., 2015, C51: 80
[144] Sigwart U, Puel J, Mirkovitch V, et al.Intravascular stents to prevent occlusion and re-stenosis after transluminal angioplasty[J]. N. Engl. J. Med., 1987, 316: 701
[145] Ilgner J, Biedron S, Fadeeva E, et al.Femtosecond laser microstructuring of titanium surfaces for middle ear ossicular replacement prosthesis [A]. Prpceedings of the SPIE 7161, Photonic Therapeutics and Diagnostics V[C]. San Jose, CA: SPIE, 2009, 7161: 71611X
[146] Kollarigowda R H, Fedele C, Rianna C, et al.Light-responsive polymer brushes: Active topographic cues for cell culture applications[J]. Polym. Chem., 2017, 8: 3271
[147] Lenhert S, Meier M B, Meyer U, et al.Osteoblast alignment, elongation and migration on grooved polystyrene surfaces patterned by Langmuir-Blodgett lithography[J]. Biomaterials, 2005, 26: 563
[148] Vozzi G, Flaim C, Ahluwalia A, et al.Fabrication of PLGA scaffolds using soft lithography and microsyringe deposition[J]. Biomaterials, 2003, 24: 2533
[149] Wei J, Pozzi D, Severino F P U, et al. Fabrication of PLGA nanofibers on PDMS micropillars for neuron culture studies[J]. Microelectron. Eng., 2017, 175: 67
[150] Chen Z J, He S Q, Butt H J, et al.Photon upconversion lithography: Patterning of biomaterials using near-infrared light[J]. Adv. Mater., 2015, 27: 2203
[151] Dalby M J, Riehle M O, Sutherland D S, et al.Changes in fibroblast morphology in response to nano-columns produced by colloidal lithography[J]. Biomaterials, 2004, 25: 5415
[152] Ballo A, Agheli H, Lausmaa J, et al.Nanostructured model implants for in vivo studies: Influence of well-defined nanotopography on de novo bone formation on titanium implants[J]. Int. J. Nanomedicine, 2011, 6: 3415
[153] de Peppo G M, Agheli H, Karlsson C, et al. Osteogenic response of human mesenchymal stem cells to well-defined nanoscale topography in vitro[J]. Int. J. Nanomedicine, 2014, 9: 2499
[154] Trtica M, Gakovic B, Batani D, et al.Surface modifications of a titanium implant by a picosecond Nd:YAG laser operating at 1064 and 532 nm[J]. Appl. Surf. Sci., 2006, 253: 2551
[155] Hallgren C, Reimers H, Chakarov D, et al.An in vivo study of bone response to implants topographically modified by laser micromachining[J]. Biomaterials, 2003, 24: 701
[156] Vorobyev A Y, Guo C L.Femtosecond laser structuring of titanium implants[J]. Appl. Surf. Sci., 2007, 253: 7272
[157] Liang C Y, Yang X J, Wei Q, et al.Comparison of calcium phosphate coatings formed on femtosecond laser-induced and sand-blasted titanium[J]. Appl. Surf. Sci., 2008, 255: 515
[158] Liang C Y, Wang H S, Yang J J, et al.Surface modification of cp-Ti using femtosecond laser micromachining and the deposition of Ca/P layer[J]. Mater. Lett., 2008, 62: 3783
[159] Nayak B K, Gupta M C, Kolasinski K W.Formation of nano-textured conical microstructures in titanium metal surface by femtosecond laser irradiation[J]. Appl. Phys., 2008, 90A: 399
[160] Liang C Y, Hu Y C, Wang H S, et al.Biomimetic cardiovascular stents for in vivo re-endothelialization[J]. Biomaterials, 2016, 103: 170
[161] Yu H J.Research development of the laser surface modification to improve the corrosion-resistance of titanium and titanium alloys[J]. Adv. Mater. Res., 2013, 748: 184
[162] Wei D Q, Zhou Y.Characteristic and biocompatibility of the TiO2-based coatings containing amorphous calcium phosphate before and after heat treatment[J]. Appl. Surf. Sci., 2009, 255: 6232
[163] Wei D Q, Zhou Y.Preparation, biomimetic apatite induction and osteoblast proliferation test of TiO2-based coatings containing P with a graded structure[J]. Ceram. Int., 2009, 35: 2343
[164] Yao Z Q, Luo Z C, Ge Z D, et al.Influence of high-energy shot peening on microstructure of titanium and bioactive titania coating followed by micro-arc oxidation[J]. J. Funct. Mater., 2010, 41: 1005(姚再起, 罗志聪, 葛振东等. 高能喷丸预处理对钛表面组织及生物活性微弧氧化层的影响[J]. 功能材料, 2010, 41: 1005)
[165] Boyan B D, Hummert T W, Dean D D, et al.Role of material surfaces in regulating bone and cartilage cell response[J]. Biomaterials, 1996, 17: 137
[166] Thomas K A, Cook S D.An evaluation of variables influencing implant fixation by direct bone apposition[J]. J. Biomed. Mater. Res., 1985, 19A: 875
[167] Germanier Y, Tosatti S, Broggini N, et al.Enhanced bone apposition around biofunctionalized sandblasted and acid-etched titanium implant surfaces. A histomorphometric study in miniature pigs[J]. Clin. Oral Implants Res., 2006, 17: 251
[168] Chen W C, Chen Y S, Ko C L, et al.Interaction of progenitor bone cells with different surface modifications of titanium implant[J]. Mater. Sci. Eng., 2014, C37: 305
[169] Yang B C, Uchida M, Kim H M, et al.Preparation of bioactive titanium metal via anodic oxidation treatment[J]. Biomaterials, 2004, 25: 1003
[170] Gao Y, Gao B, Wang R, et al.Improved biological performance of low modulus Ti-24Nb-4Zr-7.9Sn implants due to surface modification by anodic oxidation[J]. Appl. Surf. Sci., 2009, 255: 5009
[171] Sul Y T.The significance of the surface properties of oxidized titanium to the bone response: Special emphasis on potential biochemical bonding of oxidized titanium implant[J]. Biomaterials, 2003, 24: 3893
[172] Han Y, Chen D H, Sun J F, et al.UV-enhanced bioactivity and cell response of micro-arc oxidized titania coatings[J]. Acta Biomater., 2008, 4: 1518
[173] Prodanov L, Lamers E, Domanski M, et al.The effect of nanometric surface texture on bone contact to titanium implants in rabbit tibia[J]. Biomaterials, 2013, 34: 2920
[174] Domanski M.Nanofabrication methods for improved bone implants [D]. Twente: University of Twente, 2011
[175] Cai K Y, Bossert J, Jandt K D.Does the nanometre scale topography of titanium influence protein adsorption and cell proliferation?[J]. Colloids Surf., 2006, 49B: 136
[176] Wang F, Shi L, He W X, et al.Bioinspired micro/nano fabrication on dental implant-bone interface[J]. Appl. Surf. Sci., 2013, 265: 480
[177] Necula B S, Apachitei I, Fratila-Apachitei L E, et al. Titanium bone implants with superimposed micro/nano-scale porosity and antibacterial capability[J]. Appl. Surf. Sci., 2013, 273: 310
[178] Ajami E, Bell S, Liddell R S, et al.Early bone anchorage to micro- and nano-topographically complex implant surfaces in hyperglycemia[J]. Acta Biomater., 2016, 39: 169
[179] Williamson M R, Shuttleworth A, Canfield A E, et al.The role of endothelial cell attachment to elastic fibre molecules in the enhancement of monolayer formation and retention, and the inhibition of smooth muscle cell recruitment[J]. Biomaterials, 2007, 28: 5307
[180] Wieneke H, Dirsch O, Sawitowski T, et al.Synergistic effects of a novel nanoporous stent coating and tacrolimus on intima proliferation in rabbits[J]. Catheter. Cardiovasc. Interv., 2003, 60: 399
[181] Chaterji S, Kim P, Choe S H, et al.Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function[J]. Tissue Eng., 2014, 20A: 2115
[182] Peng L, Eltgroth M L, Latempa T J, et al.The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation[J]. Biomaterials, 2009, 30: 1268
[183] Liu H N, Webster T J.Nanomedicine for implants: A review of studies and necessary experimental tools[J]. Biomaterials, 2007, 28: 354
[184] Pareta R A, Reising A B, Miller T, et al.Increased endothelial cell adhesion on plasma modified nanostructured polymeric and metallic surfaces for vascular stent applications[J]. Biotechnol. Bioeng., 2009, 103: 459
[185] Mohan C C, Sreerekha P R, Divyarani V V, et al.Influence of titania nanotopography on human vascular cell functionality and its proliferation in vitro[J]. J. Mater. Chem., 2011, 22: 1326
[186] Lu J, Rao M P, MacDonald N C, et al. Improved endothelial cell adhesion and proliferation on patterned titanium surfaces with rationally designed, micrometer to nanometer features[J]. Acta Biomater., 2008, 4: 192
[187] Li J A, Li G C, Zhang K, et al.Co-culture of vascular endothelial cells and smooth muscle cells by hyaluronic acid micro-pattern on titanium surface[J]. Appl. Surf. Sci., 2013, 273: 24
[188] Crigler L, Robey R C, Asawachaicharn A, et al.Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis[J]. Exp. Neurol., 2006, 198: 54
[189] Pittenger M F, Mackay A M, Beck S C, et al.Multilineage potential of adult human mesenchymal stem cells[J]. Science, 1999, 284: 143
[190] Kshitiz, Park J, Kim P, et al. Control of stem cell fate and function by engineering physical microenvironments[J]. Integr. Biol., 2012, 4: 1008
[191] Bigerelle M, Giljean S, Anselme K.Existence of a typical threshold in the response of human mesenchymal stem cells to a peak and valley topography[J]. Acta Biomater., 2011, 7: 3302
[192] Zhao L Z, Liu L, Wu Z F, et al.Effects of micropitted/nanotubular titania topographies on bone mesenchymal stem cell osteogenic differentiation[J]. Biomaterials, 2012, 33: 2629
[193] Simmons C A, Matlis S, Thornton A J, et al.Cyclic strain enhances matrix mineralization by adult human mesenchymal stem cells via the extracellular signal-regulated kinase (ERK1/2) signaling pathway[J]. J. Biomech., 2003, 36: 1087
[194] Recknor J B, Sakaguchi D S, Mallapragada S K.Directed growth and selective differentiation of neural progenitor cells on micropatterned polymer substrates[J]. Biomaterials, 2006, 27: 4098
[195] Chan L Y, Birch W R, Yim E K F, et al. Temporal application of topography to increase the rate of neural differentiation from human pluripotent stem cells[J]. Biomaterials, 2013, 34: 382
[196] Jiang X, Cao H Q, Shi L Y, et al.Nanofiber topography and sustained biochemical signaling enhance human mesenchymal stem cell neural commitment[J]. Acta Biomater., 2012, 8: 1290
[197] Jaiswal R K, Jaiswal N, Bruder S P, et al.Adult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase[J]. J. Biol. Chem., 2000, 275: 9645
[198] Kim E K, Lim S, Park J M, et al.Human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by AMP-activated protein kinase[J]. J. Cell. Physiol., 2012, 227: 1680
[199] Dalby M J, Gadegaard N, Oreffo R O C. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate[J]. Nat. Mater., 2014, 13: 558
[200] Valencia S, Gretzer C, Cooper L F.Surface nanofeature effects on titanium-adherent human mesenchymal stem cells[J]. Int. J. Oral Maxillofac. Implants, 2009, 24: 38
[201] Naddeo P, Laino L, La Noce M, et al.Surface biocompatibility of differently textured titanium implants with mesenchymal stem cells[J]. Dent. Mater., 2015, 31: 235
[202] Zhang W J, Li Z H, Huang Q F, et al.Effects of a hybrid micro/nanorod topography-modified titanium implant on adhesion and osteogenic differentiation in rat bone marrow mesenchymal stem cells[J]. Int. J. Nanomedicine, 2013, 8: 257
[203] Chen P, Aso T, Sasaki R, et al.Role of hierarchical topography of titanium surface on mesenchymal stem cells adhesion and differentiation behaviours in vitro [A]. Proceedings of the 10th World Biomaterials Congress[C]. Montréal, Canada, 2016: 1
[204] Moradi I, Behjati M, Kazemi M.Application of anodized titanium for enhanced recruitment of endothelial progenitor cells[J]. Nanoscale Res. Lett., 2012, 7: 298
[205] Ziebart T, Schnell A, Walter C, et al.Interactions between endothelial progenitor cells (EPC) and titanium implant surfaces[J]. Clin. Oral Invest., 2013, 17: 301
[206] Kukumberg M, Yao J Y, Neo D J H, et al. Microlens topography combined with vascular endothelial growth factor induces endothelial differentiation of human mesenchymal stem cells into vasculogenic progenitors[J]. Biomaterials, 2017, 131: 68
[1] WANG Luning, YIN Yuxia, SHI Zhangzhi, HAN Qianqian. Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys[J]. 金属学报, 2023, 59(3): 319-334.
[2] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[3] HANG Tao, XUE Qi, LI Ming. A Review on Metal Micro-Nanostructured Array Materials Routed by Template-Free Electrodeposition[J]. 金属学报, 2022, 58(4): 486-502.
[4] ZHENG Yufeng, XIA Dandan, SHEN Yunong, LIU Yunsong, XU Yuqian, WEN Peng, TIAN Yun, LAI Yuxiao. Additively Manufactured Biodegrabable Metal Implants[J]. 金属学报, 2021, 57(11): 1499-1520.
[5] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[6] Luning WANG, Yao MENG, Lijun LIU, Chaofang DONG, Yu YAN. Research Progress on Biodegradable Zinc-Based Biomaterials[J]. 金属学报, 2017, 53(10): 1317-1322.
[7] Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. 金属学报, 2017, 53(10): 1227-1237.
[8] Lili TAN, Junxiu CHEN, Xiaoming YU, Ke YANG. Recent Advances on Biodegradable MgYREZrMagnesium Alloy[J]. 金属学报, 2017, 53(10): 1207-1214.
[9] Guangyin YUAN, Jialin NIU. Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications[J]. 金属学报, 2017, 53(10): 1168-1180.
[10] ZHANG Jingying QI Min YANG Dayi AI Hongjun. PREPARATION AND BIOCOMPATIBILITY OF ZnHA/TiO2 HYBRID COATING[J]. 金属学报, 2011, 47(4): 429-434.
[11] XU Wenli LU Xi TAN Lili YANG Ke. STUDY ON PROPERTIES OF A NOVEL BIODEGRADABLE Fe–30Mn–1C ALLOY[J]. 金属学报, 2011, 47(10): 1342-1347.
No Suggested Reading articles found!