Please wait a minute...
Acta Metall Sin  2017, Vol. 53 Issue (10): 1168-1180    DOI: 10.11900/0412.1961.2017.00247
Orginal Article Current Issue | Archive | Adv Search |
Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications
Guangyin YUAN1(), Jialin NIU1,2
1 National Engineering Research Center of Light Alloys Net Forming and State Key Laboratory of Metal Matrix Composite, Shanghai Jiao Tong University, Shanghai 200240, China
2 Shanghai Innovation Medical Technology Co., Ltd., Shanghai 200232, China
Cite this article: 

Guangyin YUAN, Jialin NIU. Research Progress of Biodegradable Magnesium Alloys for Orthopedic Applications. Acta Metall Sin, 2017, 53(10): 1168-1180.

Download:  HTML  PDF(6632KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium and its alloys exhibit high mechanical strength and good biocompatibility, and their modulus is similar to natural cortical bone, which could help to avoid the stress shielding effect. These advantages make them promising candidates for bone repair applications. This paper summarizes the advantages, history, challenges, and the recent research progress of biodegradable Mg alloys for orthopedic application. At last, it gives a detailed introduction of the latest researches of Shanghai Jiao Tong University on biodegradable Mg alloys, and related work to promote their clinical applications.

Key words:  biodegradable Mg-based alloy      bone fixation      biodegradation behavior      biocompatibility     
Received:  22 June 2017     
ZTFLH:  TG146.22  
Fund: Supported by National High Technology Research and Development Program of China (No.2015AA033603), National Natural Science Foundation of China (No.51571143), Enterprise international cooperation project of Science and Technology Commission of Shanghai Municipality (No.17440730700);2017 Shanghai Outstanding Academic Leaders Plan (No.17XD1402100)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00247     OR     https://www.ams.org.cn/EN/Y2017/V53/I10/1168

Fig.1  Schematic diagram showing Mg2+ promoting osteogenic differentiation into new bone[13] (DRG—dorsal root ganglia, CGRP—calcitonin gene-related polypeptide-α, CALCRL—calcitonin receptor-like receptor, RAMP1—receptor activity-modifying protein 1, PDSC—periosteum-derived stem cell, cAMP—cyclic adenosine monophosphate, CREB1—cAMP-responsive element binding protein 1, SP7—osterix, TRPM7—transient receptor potential cation channel, subfamily M, member 7, MAGT1—magnesium transporter 1)
Fig.2  MAGNEZIX? compression screw produced by Syntellix AG and its application in hallux valgus surgery[30]
Fig.3  K-MET Mg-based screws produced by U&i company were used in hand fractures fixation[33]
Fig.4  Optical images of JDBM and JDBM-DCPD samples
Fig.5  JDBM and JDBM-DCPD plates and screws (a), and implantation surgery procedure in rabbit tibia (b)
Fig.6  The images of JDBM and JDBM-DCPD screws after implanted in NZ rabbit tibia for different periods[92]
(a) JDBM screw pre-implantation (b) 8 weeks for JDBM screw (c) 8 weeks for JDBM-DCPD screw (d) 18 weeks for JDBM-DCPD screw
Fig.7  The setup of four point bending test (a), and the residual bending strength of JDBM, JDBM-DCPD and WE43 plates after implanted in rabbit tibia for different period (b)
Fig.8  The implantation surgery of JDBM-DCPD screw in rabbit mandible bone[93]
Fig.9  The residual volume of JDBM-DCPD screws implanted in NZ rabbit mandible at different time points[94]
Fig.10  Histological images of JDBM-DCPD screw implanted in mandible bone for 18 months[94] (NB—new bone, DP—degradation product, HC—Haversian canal, OB—osteoblast, OC—osteocyte)
(a) an overview (b, c) the peri-implant new bone tissue at screw head and screw thread
Fig.11  The PLA/DCPD bilayer coating on JDBM and its properties [95]
Fig.12  JDBM bone plates and screws produced by Shanghai Innovation Medical Technology Co., Ltd.
(a) bone screws (b) DCPD coated screws (c) bone screw and plate system
[1] Nagels J, Stokdijk M, Rozing P M.Stress shielding and bone resorption in shoulder arthroplasty[J]. J. Shoulder Elbow Surg., 2003, 12: 35
[2] Jacobs J J, Hallab N J, Skipor A K, et al.Metal degradation products: A cause for concern in metal-metal bearings?[J]. Clin. Orthop. Relat. Res., 2003, 417: 139
[3] Wang J Y, Wicklund B H, Gustilo R B, et al.Titanium, chromium and cobalt ions modulate the release of bone-associated cytokines by human monocytes/macrophages in vitro[J]. Biomaterials, 1996, 17: 2233
[4] Hollinger J O, Battistone G C.Biodegradable bone repair materials synthetic polymers and ceramics[J]. Clin. Orthop. Relat. Res., 1986, (207): 290
[5] Middleton J C, Tipton A J.Synthetic biodegradable polymers as orthopedic devices[J]. Biomaterials, 2000, 21: 2335
[6] Schmitz J P, Hollinger J O, Milam S B.Reconstruction of bone using calcium phosphate bone cements: A critical review[J]. J. Oral Maxillofac. Surg., 1999, 57: 1122
[7] Guo Y, Li Y B.The progress in biomaterials for the replacement of hard tissue[J]. World Sci-Tech. R&D, 2001, 23(1): 33(郭颖, 李玉宝. 骨修复材料的研究进展[J]. 世界科技研究与发展, 2001, 23(1): 33)
[8] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng., 2014, R77: 1
[9] Yuan G Y, Zhang X B, Niu J L, et al.Research progress of new type of degradable biomedical magnesium alloys JDBM[J]. Chin. J. Nonferrous Met., 2011, 21: 2476(袁广银, 章晓波, 牛佳林等. 新型可降解生物医用镁合金JDBM的研究进展[J]. 中国有色金属学报, 2011, 21: 2476)
[10] Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[11] Musso C G.Magnesium metabolism in health and disease[J]. Int. Urol. Nephrol., 2009, 41: 357
[12] Vormann J.Magnesium: Nutrition and metabolism[J]. Mol. Aspects Med., 2003, 24: 27
[13] Zhang Y F, Xu J K, Ruan Y C, et al.Implant-derived magnesium induces local neuronal production of CGRP to improve bone-fracture healing in rats[J]. Nat. Med., 2016, 22: 1160
[14] Payr E.Beitr?ge zur technik der blutgef?ss- und nervennaht nebst mittheilungen über die verwendung eines resorbirbaren metalles in der chirurgie[J]. Arch. Klin. Chir., 1900, 62: 67
[15] Lambotte A.Technique et indications de la prothèse perdue dans la traitement des fractures[J]. Presse Med. Belge, 1909, 17: 321
[16] Lambotte A.L'utilisation du magnésium comme matériel perdu dans l'ostéosynthèse[J]. Bull. Mém. Soc. Nat. Cir., 1932, 28: 1325
[17] Verbrugge J.Le matériel métallique résorbable en chirurgie osseuse[J]. Presse Méd., 1934, 23: 460
[18] Verbrugge J.L'utilisation du magnésium dans le traitement chirurgical des fractures[J]. Bull. Mém. Soc. Nat. Cir., 1937, 59: 813
[19] McBride E D. Absorbable metal in bone surgery: A further report on the use of magnesium alloys[J]. JAMA, 1938, 111: 2464
[20] Maier O.über die verwendbarkeit von leichtmetallen in der chirurgie (metallisches magnesium als reizmittel zur knochenneubildung)[J]. Deut. Z. Chir., 1940, 253: 552
[21] Troitskii V V, Tsitrin D N.The resorbing metallic alloy 'Osteosinthezit' as material for fastening broken bone[J]. Khirurgiia, 1944, 8: 41
[22] Znamenskii M S.Metallic osteosynthesis by means of an apparatus made of resorbing metal[J]. Khirurgiia, 1945, 12: 60
[23] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[24] Witte F, Kaese V, Haferkamp H, et al.In vivo corrosion of four magnesium alloys and the associated bone response[J]. Biomaterials, 2005, 26: 3557
[25] Witte F, Ulrich H, Rudert M, et al.Biodegradable magnesium scaffolds: Part I: Appropriate inflammatory response[J]. J. Biomed. Mater. Res., 2007, 81A: 748
[26] Witte F, Ulrich H, Palm C, et al.Biodegradable magnesium scaffolds: Part II: Peri-implant bone remodeling[J]. J. Biomed. Mater. Res., 2007, 81A: 757
[27] Staiger M P, Kolbeinsson I, Kirkland N T, et al.Synthesis of topologically-ordered open-cell porous magnesium[J]. Mater. Lett., 2010, 64: 2572
[28] Geng F, Tan L L, Zhang B C, et al.Study on β-TCP coated porous Mg as a bone tissue engineering scaffold material[J]. J. Mater. Sci. Technol., 2009, 25: 123
[29] Helmecke P, Ezechieli M, Becher C, et al.Resorbable interference screws made of magnesium based alloy[J]. Biomed. Tech., 2013, 58, doi: 10.1515/bmt-2013-4074
[30] Windhagen H, Radtke K, Weizbauer A, et al.Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study[J]. Biomed. Eng., 2013, 12: 62
[31] Plaass C, Ettinger S, Sonnow L, et al.Early results using a biodegradable magnesium screw for modified chevron osteotomies[J]. J. Orthop. Res., 2016, 34: 2207
[32] Seitz J M, Lucas A, Kirschner M.Magnesium-based compression screws: A novelty in the clinical use of implants[J]. JOM, 2016, 68: 1177
[33] Lee J W, Han H S, Han K J, et al.Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy[J]. Proc. Natl. Acad. Sci. USA, 2016, 113: 716
[34] Zhao D W, Huang S B, Lu F Q, et al.Vascularized bone grafting fixed by biodegradable magnesium screw for treating osteonecrosis of the femoral head[J]. Biomaterials, 2016, 81: 84
[35] Bondy S C.The neurotoxicity of environmental aluminum is still an issue[J]. Neuro Toxicology, 2010, 31: 575
[36] Verstraeten S V, Aimo L, Oteiza P I.Aluminium and lead: Molecular mechanisms of brain toxicity[J]. Arch. Toxicol., 2008, 82: 789
[37] El-Rahman S S A. Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment)[J]. Pharmacol. Res., 2003, 47: 189
[38] Zhang H, Feng J, Zhu W F, et al.Chronic toxicity of rare-earth elements on human beings: Implications of blood biochemical indices in REE-high regions, South Jiangxi[J]. Biol. Trace Element Res., 2000, 73: 1
[39] Nakamura Y, Tsumura Y, Tonogai Y, et al.Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats[J]. Toxicol. Sci., 1997, 37: 106
[40] Kuhlmann J, Bartsch I, Willbold E, et al.Fast escape of hydrogen from gas cavities around corroding magnesium implants[J]. Acta Biomater., 2013, 9: 8714
[41] Zhao D L, Wang T T, Kuhlmann J, et al.In vivo monitoring the biodegradation of magnesium alloys with an electrochemical H2 sensor[J]. Acta Biomater., 2016, 36: 361
[42] Erinc M, Sillekens W H, Mannens R G T M, et al. Applicability of existing magnesium alloys as biomedical implant materials [A]. Magnesium Technology 2009[C]. San Francisco: Willy, 2009: 209
[43] Feyerabend F, Fischer J, Holtz J, et al.Evaluation of short-term effects of rare earth and other elements used in magnesium alloys on primary cells and cell lines[J]. Acta Biomater., 2010, 6: 1834
[44] Li Z J, Gu X, Lou S Q, et al.The development of binary Mg-Ca alloys for use as biodegradable materials within bone[J]. Biomaterials, 2008, 29: 1329
[45] Wan Y Z, Xiong G Y, Luo H L, et al.Preparation and characterization of a new biomedical magnesium-calcium alloy[J]. Mater. Des., 2008, 29: 2034
[46] Rad H R B, Idris M H, Kadir M R A, et al. Microstructure analysis and corrosion behavior of biodegradable Mg-Ca implant alloys[J]. Mater. Des., 2012, 33: 88
[47] Cho S Y, Chae S W, Choi K W, et al.Biocompatibility and strength retention of biodegradable Mg-Ca-Zn alloy bone implants[J]. J. Biomed. Mater. Res., 2013, 101B: 201
[48] Zander D, Zumdick N A.Influence of Ca and Zn on the microstructure and corrosion of biodegradable Mg-Ca-Zn alloys[J]. Corros. Sci., 2015, 93: 222
[49] Berglund I S, Brar H S, Dolgova N, et al.Synthesis and characterization of Mg-Ca-Sr alloys for biodegradable orthopedic implant applications[J]. J. Biomed. Mater. Res., 2012, 100B: 1524
[50] Zhang B P, Hou Y L, Wang X D, et al.Mechanical properties, degradation performance and cytotoxicity of Mg-Zn-Ca biomedical alloys with different compositions[J]. Mater. Sci. Eng., 2011, C31: 1667
[51] Huan Z G, Leeflang M A, Zhou J, et al.In vitro degradation behavior and cytocompatibility of Mg-Zn-Zr alloys[J]. J. Mater. Sci.-Mater. Med., 2010, 21: 2623
[52] Rosalbino F, De Negri S, Saccone A, et al.Bio-corrosion characterization of Mg-Zn-X (X=Ca, Mn, Si) alloys for biomedical applications[J]. J. Mater. Sci.-Mater. Med., 2010, 21: 1091
[53] Brar H S, Wong J, Manuel M V.Investigation of the mechanical and degradation properties of Mg-Sr and Mg-Zn-Sr alloys for use as potential biodegradable implant materials[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 87
[54] Zhao X, Shi L L, Xu J.Biodegradable Mg-Zn-Y alloys with long-period stacking ordered structure: optimization for mechanical properties[J]. J. Mech. Behav. Biomed. Mater., 2013, 18: 181
[55] Lu Y, Bradshaw A R, Chiu Y L, et al.Effects of secondary phase and grain size on the corrosion of biodegradable Mg-Zn-Ca alloys[J]. Mater. Sci. Eng., 2015, C48: 480
[56] Zhang E L, Yin D S, Xu L P, et al.Microstructure, mechanical and corrosion properties and biocompatibility of Mg-Zn-Mn alloys for biomedical application[J]. Mater. Sci. Eng., 2009, C29: 987
[57] Liu M, Schmutz P, Uggowitzer P J, et al.The influence of yttrium (Y) on the corrosion of Mg-Y binary alloys[J]. Corros. Sci., 2010, 52: 3687
[58] Zhang X B, Yuan G Y, Mao L, et al.Biocorrosion properties of as-extruded Mg-Nd-Zn-Zr alloy compared with commercial AZ31 and WE43 alloys[J]. Mater. Lett., 2012, 66: 209
[59] Bornapour M, Muja N, Shum-Tim P, et al.Biocompatibility and biodegradability of Mg-Sr alloys: The formation of Sr-substituted hydroxyapatite[J]. Acta Biomater., 2013, 9: 5319
[60] Gu X N, Xie X H, Li N, et al.In vitro and in vivo studies on a Mg-Sr binary alloy system developed as a new kind of biodegradable metal[J]. Acta Biomater., 2012, 8: 2360
[61] Gu X N, Zheng Y F, Cheng Y, et al.In vitro corrosion and biocompatibility of binary magnesium alloys[J]. Biomaterials, 2009, 30: 484
[62] Zhang E L, Yang L, Xu J W, et al.Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application[J]. Acta Biomater., 2010, 6: 1756
[63] Xu L P, Yu G N, Zhang E L, et al.In vivo corrosion behavior of Mg-Mn-Zn alloy for bone implant application[J]. J. Biomed. Mater. Res., 2007, 83A: 703
[64] Sun X, Cao Z Y, Zhang J L, et al.Mechanical and corrosion properties of newly developed Mg-Mn-Ca alloys as potential biodegradable implant materials[J]. Corros. Eng. Sci. Technol., 2014, 49: 303
[65] Li Y C, Wen C E, Mushahary D, et al.Mg-Zr-Sr alloys as biodegradable implant materials[J]. Acta Biomater., 2012, 8: 3177
[66] Chiu K Y, Wong M H, Cheng F T, et al.Characterization and corrosion studies of fluoride conversion coating on degradable Mg implants[J]. Surf. Coat. Technol., 2007, 202: 590
[67] Witte F, Fischer J, Nellesen J, et al.In vivo corrosion and corrosion protection of magnesium alloy LAE442[J]. Acta Biomater., 2010, 6: 1792
[68] Seitz J M, Collier K, Wulf E, et al.Comparison of the corrosion behavior of coated and uncoated magnesium alloys in an in vitro corrosion environment[J]. Adv. Eng. Mater., 2011, 13: B313
[69] Jo J H, Kang B G, Shin K S, et al.Hydroxyapatite coating on magnesium with MgF2 interlayer for enhanced corrosion resistance and biocompatibility[J]. J. Mater. Sci.-Mater. Med., 2011, 22: 2437
[70] Gu X N, Zheng W, Cheng Y, et al.A study on alkaline heat treated Mg-Ca alloy for the control of the biocorrosion rate[J]. Acta Biomater., 2009, 5: 2790
[71] Narayanan T S N S, Park I S, Lee M H. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges[J]. Prog. Mater. Sci., 2014, 60: 1
[72] Gu X N, Li N, Zhou W R, et al.Corrosion resistance and surface biocompatibility of a microarc oxidation coating on a Mg-Ca alloy[J]. Acta Biomater., 2011, 7: 1880
[73] Gao J H, Guan S K, Chen J, et al.Fabrication and characterization of rod-like nano-hydroxyapatite on MAO coating supported on Mg-Zn-Ca alloy[J]. Appl. Surf. Sci., 2011, 257: 2231
[74] Wang H X, Guan S K, Wang X, et al.In vitro degradation and mechanical integrity of Mg-Zn-Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process[J]. Acta Biomater., 2010, 6: 1743
[75] Song Y, Zhang S X, Li J A, et al.Electrodeposition of Ca-P coatings on biodegradable Mg alloy: In vitro biomineralization behavior[J]. Acta Biomater., 2010, 6: 1736
[76] Keim S, Brunner J G, Fabry B, et al.Control of magnesium corrosion and biocompatibility with biomimetic coatings[J]. J. Biomed. Mater. Res., 2011, 96B: 84
[77] Zhang Y J, Zhang G Z, Wei M.Controlling the biodegradation rate of magnesium using biomimetic apatite coating[J]. J. Biomed. Mater. Res., 2009, 89B: 408
[78] Gray-Munro J E, Strong M. The mechanism of deposition of calcium phosphate coatings from solution onto magnesium alloy AZ31[J]. J. Biomed. Mater. Res., 2009, 90A: 339
[79] Wang Q, Tan L L, Xu W L, et al.Dynamic behaviors of a Ca-P coated AZ31B magnesium alloy during in vitro and in vivo degradations[J]. Mater. Sci. Eng., 2011, B176: 1718
[80] Hu J H, Zhang C L, Cui B H, et al.In vitro degradation of AZ31 magnesium alloy coated with nano TiO2 film by sol-gel method[J]. Appl. Surf. Sci., 2011, 257: 8772
[81] Roy A, Singh S S, Datta M K, et al.Novel sol-gel derived calcium phosphate coatings on Mg4Y alloy[J]. Mater. Sci. Eng., 2011, B176: 1679
[82] Wan Y Z, Xiong G Y, Luo H L, et al.Influence of zinc ion implantation on surface nanomechanical performance and corrosion resistance of biomedical magnesium-calcium alloys[J]. Appl. Surf. Sci., 2008, 254: 5514
[83] Wu G S, Zeng X Q, Yao S S, et al. Ion implanted AZ31 magnesium alloy [J]. Mater. Sci. Forum, 2007, 546-549: 551
[84] Li J N, Cao P, Zhang X N, et al.In vitro degradation and cell attachment of a PLGA coated biodegradable Mg-6Zn based alloy[J]. J. Mater. Sci., 2010, 45: 6038
[85] Wong H M, Yeung K W K, Lam K O, et al. A biodegradable polymer-based coating to control the performance of magnesium alloy orthopaedic implants[J]. Biomaterials, 2010, 31: 2084
[86] Zhang X B, Wang Z Z, Yuan G Y, et al.Improvement of mechanical properties and corrosion resistance of biodegradable Mg-Nd-Zn-Zr alloys by double extrusion[J]. Mater. Sci. Eng., 2012, B177: 1113
[87] Zhang X B, Yuan G Y, Mao L, et al.Effects of extrusion and heat treatment on the mechanical properties and biocorrosion behaviors of a Mg-Nd-Zn-Zr alloy[J]. J. Mech. Behav. Biomed. Mater., 2012, 7: 77
[88] Zhang X B, Yuan G Y, Niu J L, et al.Microstructure, mechanical properties, biocorrosion behavior, and cytotoxicity of as-extruded Mg-Nd-Zn-Zr alloy with different extrusion ratios[J]. J. Mech. Behav. Biomed. Mater., 2012, 9: 153
[89] Zhang X B, Yuan G Y, Wang Z Z.Mechanical properties and biocorrosion resistance of Mg-Nd-Zn-Zr alloy improved by cyclic extrusion and compression[J]. Mater. Lett., 2012, 74: 128
[90] Mao L, Yuan G Y, Wang S H, et al.A novel biodegradable Mg-Nd-Zn-Zr alloy with uniform corrosion behavior in artificial plasma[J]. Mater. Lett., 2012, 88: 1
[91] Zong Y, Yuan G Y, Zhang X B, et al.Comparison of biodegradable behaviors of AZ31 and Mg-Nd-Zn-Zr alloys in Hank's physiological solution[J]. Mater. Sci. Eng., 2012, B177: 395
[92] Niu J L, Yuan G Y, Liao Y, et al.Enhanced biocorrosion resistance and biocompatibility of degradable Mg-Nd-Zn-Zr alloy by brushite coating[J]. Mater. Sci. Eng., 2013, C33: 4833
[93] Guan X M, Xiong M P, Zeng F Y, et al.Enhancement of osteogenesis and biodegradation control by brushite coating on Mg-Nd-Zn-Zr alloy for mandibular bone repair[J]. ACS Appl. Mater. Interfaces, 2014, 6: 21525
[94] Niu J L, Xiong M P, Guan X M, et al.The in vivo degradation and bone-implant interface of Mg-Nd-Zn-Zr alloy screws: 18 months post-operation results[J]. Corros. Sci., 2016, 113: 183
[95] Zhang L, Pei J, Wang H D, et al.Facile preparation of poly(lactic acid)/brushite bilayer coating on biodegradable magnesium alloys with multiple functionalities for orthopedic application[J]. ACS Appl. Mater. Interfaces, 2017, 9: 9437
[96] Qin H, Zhao Y C, An Z Q, et al.Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg-Nd-Zn-Zr alloy[J]. Biomaterials, 2015, 53: 211
[1] WANG Luning, YIN Yuxia, SHI Zhangzhi, HAN Qianqian. Research Progress on Biocompatibility Evaluation of Biomedical Degradable Zinc Alloys[J]. 金属学报, 2023, 59(3): 319-334.
[2] CUI Zhenduo, ZHU Jiamin, JIANG Hui, WU Shuilin, ZHU Shengli. Research Progress of the Surface Modification of Titanium and Titanium Alloys for Biomedical Application[J]. 金属学报, 2022, 58(7): 837-856.
[3] ZHENG Yufeng, XIA Dandan, SHEN Yunong, LIU Yunsong, XU Yuqian, WEN Peng, TIAN Yun, LAI Yuxiao. Additively Manufactured Biodegrabable Metal Implants[J]. 金属学报, 2021, 57(11): 1499-1520.
[4] Erlin ZHANG, Xiaoyan WANG, Yong HAN. Research Status of Biomedical Porous Ti and Its Alloy in China[J]. 金属学报, 2017, 53(12): 1555-1567.
[5] Luning WANG, Yao MENG, Lijun LIU, Chaofang DONG, Yu YAN. Research Progress on Biodegradable Zinc-Based Biomaterials[J]. 金属学报, 2017, 53(10): 1317-1322.
[6] Chunyong LIANG, Jingzu HAO, Hongshui WANG, Baoe LI, Dan XIA. Preparation and Research Progress of Contact-Induced Surface of Metal Implants[J]. 金属学报, 2017, 53(10): 1265-1283.
[7] Lili TAN, Junxiu CHEN, Xiaoming YU, Ke YANG. Recent Advances on Biodegradable MgYREZrMagnesium Alloy[J]. 金属学报, 2017, 53(10): 1207-1214.
[8] Yufeng ZHENG, Hongtao YANG. Research Progress in Biodegradable Metals forStent Application[J]. 金属学报, 2017, 53(10): 1227-1237.
[9] ZHANG Jingying QI Min YANG Dayi AI Hongjun. PREPARATION AND BIOCOMPATIBILITY OF ZnHA/TiO2 HYBRID COATING[J]. 金属学报, 2011, 47(4): 429-434.
[10] XU Wenli LU Xi TAN Lili YANG Ke. STUDY ON PROPERTIES OF A NOVEL BIODEGRADABLE Fe–30Mn–1C ALLOY[J]. 金属学报, 2011, 47(10): 1342-1347.
No Suggested Reading articles found!