Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (6): 744-752    DOI: 10.3724/SP.J.1037.2014.00040
Current Issue | Archive | Adv Search |
EFFECTS OF Nb/Ti RATIOS ON THE MICROSTRUCTURAL EVOLUTIONS OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE
SUN Wen1,2, QIN Xuezhi2, GUO Yongan2, GUO Jianting2, LOU Langhong2, ZHOU Lanzhang2
1 University of Science and Technology of China, Hefei 230022
2 Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

SUN Wen, QIN Xuezhi, GUO Yongan, GUO Jianting, LOU Langhong, ZHOU Lanzhang. EFFECTS OF Nb/Ti RATIOS ON THE MICROSTRUCTURAL EVOLUTIONS OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE. Acta Metall Sin, 2014, 50(6): 744-752.

Download:  HTML  PDF(11214KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effects of Nb/Ti ratios on the microstructural evolutions of cast Ni-based suerpalloys during long-term thermal exposure are investigated by OM, SEM and TEM. The results show that Nb/Ti ratios have no influence on the evolution of γ? morphology and size during long-term thermal exposure. However, with decrease of Nb/Ti ratios in alloys, the volume fraction of γ? phase increases. Both parameters Nb/Ti and (Nb+Ti)/(W+Mo) of primary MC have a good linear relationship with Nb/Ti ratios in alloys. With decrease of Nb/Ti ratios in alloys, both parameters for primary MC linearly decrease and sequentially thermal stability of primary MC is weakened. However, the results also show that Nb/Ti and (Nb+Ti)/(W+Mo) ratios of primary MC are not the principle factors determining the thermal stability of primary MC. The degeneration degree of primary MC can be calculated by the volume fraction of primary MC before and after degeneration, while the thermal stability of primary MC can be quantitatively characterized by degeneration degree of primary MC. Furthermore, with decreased Nb/Ti ratios in alloys, the grain boundaries coarsen more severely during long-term thermal exposure. Meanwhile, precipitation tendency of M23C6 carbide on grain boundaries increases and that of M6C carbide on grain boundaries decreases. However, the precipitation and evolution of μ phase during long-term thermal exposure is not affected by Nb/Ti ratios obviously.

Key words:  cast Ni-based superalloy      Nb/Ti ratio      long-term exposure      microstructural evolution     
Received:  17 January 2014     
ZTFLH:  TA211.8  
Fund: Supported by National Natural Science Foundation of China (No.51001101)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2014.00040     OR     https://www.ams.org.cn/EN/Y2014/V50/I6/744

Fraction Sample C Cr Al Ti Nb W Mo Fe Ni Nb+Ti Nb/Ti Al+Ti+Nb W+Mo Mo/
(W+Mo)
%
Mass A0 0.09 15.83 1.66 2.48 1.14 4.89 3.52 14.80 Bal. 3.62 0.46 - 8.41 0.42
A2 0.09 15.23 1.80 3.03 0.62 4.95 3.61 14.90 Bal. 3.65 0.20 - 8.56 0.42
A4 0.10 15.39 1.82 3.49 0.10 4.94 3.58 14.80 Bal. 3.59 0.03 - 8.52 0.42
Atomic A0 0.44 17.83 3.60 3.03 0.72 1.56 2.15 15.48 Bal. - - 7.35 - -
A2 0.43 17.10 3.89 3.67 0.39 1.57 2.20 15.53 Bal. - - 7.95 - -
A4 0.48 17.22 3.92 4.23 0.06 1.56 2.17 15.37 Bal. - - 8.21 - -
Table 1  Compositions of experimental alloys
Fig.1  Typical microstructures of sample A0 after standard heat treatment (1110 ℃, 4.5 h, A.C.+750 ℃, 10.5 h, A.C.)

(a) OM image (b) SEM image of γ' phase (c) SEM image of grain boundary

(d) TEM image of grain boundary (Insets show SAED of M6C and M23C6)

Fig.2  SEM images of γ? phase in samples A0 (a, d, g), A2 (b, e, h) and A4 (c, f, i) after aging at 850 ℃ for 1.0×103 h (a~c), 6.0×103 h (d~f) and 10.0×103 h (g~i)
Fig.3  Size (a) and volume fraction (b) changes of γ? phase with exposure time
Fig.4  Dependence of Nb/Ti and (Ti+Nb)/(W+Mo) ratios of MC on Nb/Ti ratios in alloys
Sample Nb Ti Mo W Cr Ni Nb/Ti Nb+Ti (Nb+Ti)/(W+Mo)
A0 41.0 29.3 9.0 16.0 1.6 3.1 1.4 70.3 2.8
A2 23.9 37.6 11.1 23.5 1.3 2.6 0.6 61.5 1.8
A4 4.7 43.0 13.6 31.1 2.6 5.0 0.1 47.7 1.1
Table 2  Compositions of primary MC after heat treatment
Fig.5  SEM images of MC degeneration in samples A0 (a~c), A2 (d~f) and A4 (g~i) alloy after aging at 850 ℃ for 0.5×103 h (a, d, g), 6.0×103 h (b, e, h) and 10.0×103 h (c, f, i)
Fig.6  Degeneration degree (D) of primary MC changes with aging time (t)
Fig.7  SEM images of grain boundaries in samples A0 (a, d), A2 (b, e) and A4 (c, f) alloys after aging at 850 ℃ for 0.5 ×103 h (a~c) and 10.0×103 h (d~f), respectively
Fig.8  SEM images of μ phase in sample A4 after aging at 850 ℃ for 0.5×103 h (a), 3.0×103 h (b), 6.0×103 h (c) and 10.0×103 h (d)
Fig.9  Change of volume fraction of μ phase with exposure time
[1] Ross E W, Sims C T. In: Sims C T, Stoloff N S, Hagel W C eds., Superalloys II, NY: Wiley, 1987: 97
[2] Pollock T M. Mater Sci Eng, 1999; B32: 255
[3] Giamei A F, Anton D L. Metall Trans, 1985; 16A: 1997
[4] Rae C M F, Karunaratne M S A, Small C J, Broomfiels C N, Jones C N, Reed R C. Superalloys. Warrendale: TMS, 2000: 767
[5] Koul A K, Castillo R. Metall Trans, 1988; 19A: 2049
[6] Qin X Z, Guo J T, Yuan C, Chen C L, Ye H Q. Metall Mater Trans, 2007; 38A: 3014
[7] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 258
[8] Qin X Z, Guo J T, Yuan C, Hou J S, Ye H Q. Mater Lett, 2008; 62: 2275
[9] Qin X Z, Guo J T, Yuan C, Yang G X, Zhou L Z, Ye H Q. J Mater Sci, 2009; 44: 4840
[10] Stevens R A, Flewitt P E J. Mater Sci Eng, 1979; A37: 237
[11] Choi B G, Kim I S, Kim D H, Jo C Y. Mater Sci Eng, 2008; A478: 329
[12] Lvov G, Levit V I, Kaufman M J. Metall Mater Trans, 2004; 35A: 1669
[13] Wang J, Zhou L Z, Qin X Z, Sheng L Y, Hou J S, Guo J T. Mater Sci Eng, 2012; A553: 14
[14] Qin X Z, Guo J T, Yuan C, Hou J S, Zhou L Z, Ye H Q. Acta Metall Sin, 2010; 46: 213
(秦学智, 郭建亭, 袁超, 候介山, 周兰章, 叶恒强. 金属学报, 2010; 46: 213)
[15] Ricks R, Porter A, Ecob R. Acta Metall, 1983; 31: 43
[16] Gomez-Acebo T, Navarcorena B, Castro F. J Phase Equilibria, 2004; 25: 237
[17] Japan Institute of Metals. Kinzoku Data Book. Tokyo: Maruzen, 1974: 24
[18] ISIJ. Iron and Steel Handbook, Vol.I Fundamental. 3rd Ed, Tokyo: Maruzen, 1981: 350
[19] Guo J T. Materials Science and Engineering for Superalloys, Vol.1. Beijing: Science Press, 2008: 126
(郭建亭. 高温合金材料学(上册). 北京: 科学出版社, 2008: 126)
[20] Jo T S, Kim S H, Kim D G, Park J Y, Kim Y D. Metall Mater Int, 2008; 14: 739
[21] Mohammad A G, Mohsen M. Mater Des, 2011; 32: 2695
[22] Cai Y L, Zheng Y R. Acta Metall Sin, 1982; 18: 30
(蔡榆林, 郑运荣. 金属学报, 1983; 18: 30)
[23] Pessah-Simonetti M, Caron P, Khan T. Superalloys. Warrendale: TMS, 1992: 567
[1] WU Jing,LIU Yongchang,LI Chong,WU Yuting,XIA Xingchuan,LI Huijun. Recent Progress of Microstructure Evolution and Performance of Multiphase Ni3Al-Based Intermetallic Alloy with High Fe and Cr Contents[J]. 金属学报, 2020, 56(1): 21-35.
[2] Zhanxing CHEN,Hongsheng DING,Ruirun CHEN,Jingjie GUO,Hengzhi FU. Microstructural Evolution and Mechanism of Solidified TiAl Alloy Applied Electric Current Pulse[J]. 金属学报, 2019, 55(5): 611-618.
[3] Junjun CUI,Liqing CHEN,Haizhi LI,Weiping TONG. TEMPERED MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUSTEMPERED LOW ALLOYED BAINITIC DUCTILE IRON[J]. 金属学报, 2016, 52(7): 778-786.
[4] Wen SUN,Xuezhi QIN,Jianting GUO,Langhong LOU,Lanzhang ZHOU. DEGENERATION PROCESS AND MECHANISM OF PRIMARY MC CARBIDES IN A CAST Ni-BASED SUPERALLOY[J]. 金属学报, 2016, 52(4): 455-462.
[5] Jieshan HOU,Jianting GUO,Chao YUAN,Lanzhang ZHOU. STUDY ON THE PRECIPITATION AND DISSOLUTION OF σ PHASE IN A HOT CORROSION RESISTANCE CAST NICKLE BASE SUPERALLOY[J]. 金属学报, 2016, 52(2): 168-176.
[6] SUN Wen, QIN Xuezhi, GUO Jianting, LOU Langhong, ZHOU Lanzhang. EFFECTS OF (W+Mo)/Cr RATIO ON MICROSTRUC-TURAL EVOLUTIONS AND MECHANICAL PROPER-TIES OF CAST Ni-BASED SUPERALLOYS DURING LONG-TERM THERMAL EXPOSURE[J]. 金属学报, 2015, 51(1): 67-76.
[7] YUE Wu, QIN Hongbo, ZHOU Minbo, MA Xiao, ZHANG Xinping. INFLUENCE OF SOLDER JOINT CONFIGURATION ON ELECTROMIGRATION BEHAVIOR AND MICROSTRUCTURAL EVOLUTION OF Cu/Sn-58Bi/Cu MICROSCALE JOINTS[J]. 金属学报, 2012, 48(6): 678-686.
[8] XIAO Xuan XU Hui QIN Xuezhi GUO Yongan GUO Jianting ZHOU Lanzhang. THERMAL FATIGUE BEHAVIORS OF THREE CAST NICKEL BASE SUPERALLOYS[J]. 金属学报, 2011, 47(9): 1129-1134.
[9] MAN Jiao ZHANG Jihua RONG Yonghua. THREE-DIMENSIONAL PHASE FIELD STUDY ON STRAIN SELF-ACCOMMODATION IN MARTENSTIC TRANSFORMATION[J]. 金属学报, 2010, 46(7): 775-780.
[10] HU Jing LIN Dongliang WANG Yan. EBSD ANALYSES OF THE MICROSTRUCTURAL EVOLUTION AND CSL CHARACTERISTIC GRAIN BOUNDARY OF COARSE--GRAINED NiAl ALLOY DURING PLASTIC DEFORMATION[J]. 金属学报, 2009, 45(6): 652-656.
[11] FANG Hongsheng; BO Xiangzheng; WANG Jiajun; XU Ning(Deperment of Materials Science & Engineering; Tsinghua University; Beijing 100084)Correspondent : BO Xiangzheag Fas:(010)62771160; Tel: (010)62782361;E-mail: fhsdms tsinghua edu .cn. THREE DIMENSIONAL MORPHOLOGY AND MICROSTRUCTURAL EVOLUTION OF BAINITE[J]. 金属学报, 1998, 34(6): 579-585.
No Suggested Reading articles found!