Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 839-844    DOI: 10.3724/SP.J.1037.2013.00745
Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-BASED SUPERALLOY WITH REFINED GRAINS
YANG Jinxia(), SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

YANG Jinxia, SUN Yuan, JIN Tao, SUN Xiaofeng, HU Zhuangqi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF A Ni-BASED SUPERALLOY WITH REFINED GRAINS. Acta Metall Sin, 2014, 50(7): 839-844.

Download:  HTML  PDF(7395KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A new Ni-based superalloy with the refined grains is to be used in industrial and aircraft turbines because of its high strength and excellent fatigue resistance at lower and medium temperatures (500~800 ℃). The grains with six different sizes have been made by decreasing the pouring temperature from 1460 to 1480 ℃ then 1500 ℃ and adding refiner to alloy and planting seed on the surface of mold. The size of equiaxed crystal grain is reduced to 0.5 mm in the center part of specimen with the columnar crystals in the outside of specimen made by the refining process which is finer than those of traditional process. It has been found that γ' phase and carbide are finer in refined grains than those in the coarse grains made by decreasing the pouring temperature. The room-temperature tensile properties and high cycle fatigue properties of tested alloy are improved with decreasing grain size. The stress-rupture properties are increased under the conditions of 760 ℃ and 662 MPa while are decreased with decreasing the grain size. The grain structure and size are refined by the refining process that dominated the excellent mechanical properties of tested alloy at lower and medium temperatures. However, it is not good for the mechanical properties at high temperatures.

Key words:  Ni-based superalloy      refiner      stress-rupture property      high cycle fatigue property     
Received:  19 November 2013     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00745     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/839

Fig.1  Grain structures of tested alloy at conditions of Rg1 (a), Rg2 (b), Rg3 (c), Rf1 (d), Rf2 (e) and Rf3 (f) (Rg1—pouring temperature at 1500 ℃, Rg2—pouring temperature at 1480 ℃, Rg3—pouring temperature at 1460 ℃, Rf1—the first refining process, Rf2—the second refining process, Rf3—the third refining process)
Fig.2  Morphologies of γ' phase in tested alloy at conditions of Rg1 (a), Rg3 (b), Rf1 (c) and Rf2 (d)
Condition σb / MPa σs / MPa δ / %
Rg1 1071.2 952.6 5.50
Rg3 1080.2 960.4 6.00
Rf1 1135.5 996.9 6.50
Rf2 1143.3 990.6 7.43
Table 1  Tensile properties of tested alloy at room temperature
Fig.3  Morphologies of carbies in tested alloy at conditions of Rg1 (a), Rg3 (b), Rf1 (c) and Rf2 (d)
Condition τ / h δ / %
Rg1 51.6 5.63
Rg3 90.2 5.89
Rf1 126.8 7.30
Rf2 162.4 8.42
Table 2  Stress-rupture properties of tested alloy at 760 ℃ and 662 MPa in different conditions
Condition τ / h δ / %
Rg1 64.3 6.28
Rg3 58.2 7.14
Rf1 57.2 7.04
Rf2 50.1 7.20
Table 3  Stress-rupture properties of tested alloy at 982 ℃ and 186 MPa in different conditions
Fig.4  Effects of grain structure on high cycle fatigue properties of superalloy
[1] Ewing B A, Green K A. In: Gell M, Kortovin C S, Bricknell R H, Kent W B, Radavich J F eds., Superalloys, Champion: The Metallergical Society of AIME, 1984: 33
[2] McClean M. Mater Sci Technol, 1988; 4: 205
[3] Bouse G K, Behrend M R. In: Loria E ed., Mechanical Properties of Microcast-X Alloy 718 Fine Grain Investment Castings, Superalloy 718-Metallurgy and Applications, Warrendale, PA: The Metallurgical Society, 1989: 319
[4] Prichard P D, Dalal R P. In: Antolovich S D, Stusrud R W, Mackay R A, Anton D L, Khan T, Kissinger R D, Klarstrom D L eds., Superalloys, Champion: The Metallurgical Society of AIME, 1992: 205
[5] Liu L, Zhen B L, Banerlly A, Relf W. Scr Metall Mater, 1994; 30: 593
[6] Liu L, Huang T, Xiong Y, Yang A, Zhao Z, Zhang R, Li J. Mater Sci Eng, 2005; A394: 1
[7] Xiong Y, Yang A, Guo Y, Liu W, Liu L. Sci Technol Adv Mater, 2001; 2: 13
[8] Xiong Y H, Liu W, Yang A M, Zhang R, Liu L. Acta Metall Sin, 1999; 35: 689
(熊玉华, 柳 伟, 杨爱民, 张 蓉, 刘 林. 金属学报, 1999; 35: 689)
[9] Ma Y, Sun J, Xie X, Hu Y, Zhao J, Yan P. J Mater Sci Technol, 2003; 137: 35
[10] Zhang B, Cui J, Liu G. Mater Sci Eng, 2003; A355: 325
[11] Paul P C, Nasar S A. Introduction of Electromagnetic Fields. New York: McGraw-Hill, 1987: 306
[12] Li T G, Cao Z Q, Jin J Z, Zhang Z F. Mater Trans, 2001; 42: 281
[13] Cao Z Q, Jia F, Zhang X G, Hao H, Jin J Z. Mater Sci Eng, 2002; A327: 133
[14] Zhou J, Xie F X, Wu X Q, Zhang J. Foundry, 2009; 58: 678
(周俊, 谢发勤, 吴向清, 张军. 铸造, 2009; 58: 678)
[15] Zheng J B, Ding J, Guo Y P, Liu L, Liu W, Li X J. Acta Metall Sin, 1998; 34: 362
(郑建邦, 丁 洁, 郭益平, 刘 林, 柳 伟, 李行建. 金属学报, 1998; 34: 362)
[16] Zhao H T, Shi C X. Acta Metall Sin, 1981; 17: 118
(赵慧田, 师昌绪. 金属学报, 1981; 17: 118)
[17] EI-Bagoury N, Nofal A. Mater Sci Eng, 2010; A527: 7793
[18] Hu H Q. Principles of Metal Solidification. Beijing: Machinery Industry Press, 1991: 48
(胡汉起. 金属凝固原理. 北京: 机械工业出版社, 1991: 48)
[19] Herlach D M. Mater Sci Eng, 1994; R12: 177
[20] Peng Z F. Acta Metall Sin, 2002; 23: 135
(彭志方. 金属学报, 2002; 23: 135)
[21] Yin F S. PhD Dissertation, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 2003
(殷凤仕. 中国科学院金属研究所博士学位论文, 沈阳, 2003)
[22] Jin W Z, Li J, Li T J, Yin G M. Rare Met Mater Eng, 2008; 37: 1012
(金文中, 李 军, 李廷举, 殷国茂. 稀有金属材料与工程, 2008; 37: 1012)
[23] Qiu H, Qian H C, Samir H A, Wu S M. Foundry Technol, 2004; 25: 265
(邱 华, 钱翰城, Samir H A, 吴仕明. 铸造技术, 2004; 25: 265)
[24] Nilsson J O, Thorvaldsson T. Fatigue Fract Eng Mater Struct, 1985; 8: 4
[25] Leverant G R. Trans Metall Soc AIME, 1969: 245
[26] Liu F X, Yuan W M, Tang X, Yang A D. Acta Metall Sin, 1995; 31(Suppl): S739
(刘发信, 袁文明, 汤 鑫, 杨爱德. 金属学报, 1995; 31(增刊): S739)
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[3] ZHANG Lu, YU Zhiwei, ZHANG Leicheng, JIANG Rong, SONG Yingdong. Thermo-Mechanical Fatigue Cycle Damage Mechanism and Numerical Simulation of GH4169 Superalloy[J]. 金属学报, 2023, 59(7): 871-883.
[4] LIU Laidi, DING Biao, REN Weili, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Multilayer Structure of DZ445 Ni-Based Superalloy Formed by Long Time Oxidation at High Temperature[J]. 金属学报, 2023, 59(3): 387-398.
[5] ZHU Yuping, Naicheng SHENG, XIE Jun, WANG Zhenjiang, XUN Shuling, YU Jinjiang, LI Jinguo, YANG Lin, HOU Guichen, ZHOU Yizhou, SUN Xiaofeng. Precipitation Behavior of W-Rich Phases in a High W-Containing Ni-Based Superalloys K416B[J]. 金属学报, 2021, 57(2): 215-223.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] ZHANG Beijiang,HUANG Shuo,ZHANG Wenyun,TIAN Qiang,CHEN Shifu. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques[J]. 金属学报, 2019, 55(9): 1095-1114.
[8] Weipeng REN, Qing LI, Qiang HUANG, Chengbo XIAO, Limin HE. Oxidation and Microstructure Evolution of CoAl Coating on Directionally Solidified Ni-Based Superalloys DZ466[J]. 金属学报, 2018, 54(4): 566-574.
[9] Songsong HU,Lin LIU,Qiangwei CUI,Taiwen HUANG,Jun ZHANG,Hengzhi FU. CONVERGING COMPETITIVE GROWTH IN BI-CRYSTAL OF Ni-BASED SUPERALLOY DURINGDIRECTIONAL SOLIDIFICATION[J]. 金属学报, 2016, 52(8): 897-904.
[10] Siqian ZHANG,Dong WANG,Di WANG,Jianqiang PENG. INFLUENCE OF Re ON MICROSTRUCTURESOF A DIRECTIONALLY SOLIDIFIEDNi-BASED SUPERALLOY[J]. 金属学报, 2016, 52(7): 851-858.
[11] Wen SUN,Xuezhi QIN,Jianting GUO,Langhong LOU,Lanzhang ZHOU. DEGENERATION PROCESS AND MECHANISM OF PRIMARY MC CARBIDES IN A CAST Ni-BASED SUPERALLOY[J]. 金属学报, 2016, 52(4): 455-462.
[12] Jun XIE, Jinjiang YU, Xiaofeng SUN, Tao JIN. HIGH-CYCLE FATIGUE BEHAVIOR OF K416B Ni-BASED CASTING SUPERALLOY AT 700 ℃[J]. 金属学报, 2016, 52(3): 257-263.
[13] Jun XIE,Jinjiang YU,Xiaofeng SUN,Tao JIN,Yanhong YANG. INFLUENCE OF TEMPERATURE ON TENSILE BEHAVIORS OF K416B Ni-BASED SUPERALLOY WITH HIGH W CONTENT[J]. 金属学报, 2015, 51(8): 943-950.
[14] XIE Jun, YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP[J]. 金属学报, 2015, 51(4): 458-464.
[15] Beijiang ZHANG,Guangpu ZHAO,Wenyun ZHANG,Shuo HUANG,Shifu CHEN. INVESTIGATION OF HIGH PERFORMANCE DISC ALLOY GH4065 AND ASSOCIATED ADVANCED PROCESSING TECHNIQUES[J]. 金属学报, 2015, 51(10): 1227-1234.
No Suggested Reading articles found!