Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 515-523    DOI: 10.3724/SP.J.1037.2013.00623
Current Issue | Archive | Adv Search |
EFFECT OF ULTRA-FAST CONTINIOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LOW Si GRADE Nb-Ti MICROALLOYING TRIP STEEL
LUO Zongan, LIU Jiyuan, FENG Yingying, PENG Wen
State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110819
Cite this article: 

LUO Zongan, LIU Jiyuan, FENG Yingying, PENG Wen. EFFECT OF ULTRA-FAST CONTINIOUS ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF LOW Si GRADE Nb-Ti MICROALLOYING TRIP STEEL. Acta Metall Sin, 2014, 50(5): 515-523.

Download:  HTML  PDF(16853KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Si-containing transformation induced plasticity (TRIP) steel is noted for good balance of excellent formability and high strength as the advanced high strength steel (AHSS). The advantage of this steel can be attributed to the TRIP effect, which is the transformation of the retained austenite. Furthermore, the local increase in specific volume caused by the TRIP effect can help to close propagating cracks. It is favorable for the automotive structural components based on the high work hardening rate and energy absorption behavior. Low Si-containing can optimize the galvanized performance of the cold rolling TRIP steel, and the ferrite stabilization can be compensated by adding Al. Microalloying with Nb and Ti may provide effective means for further strengthening via grain refinement and precipitation strengthening. The ultra-fast continuous annealing comprised of rapid heating and short austempering is a new-style process for grain refinement and precipitation solidifying. However, the influences of the process on the cold rolling low Si TRIP steel, especially the austenite transformation characteristics and their effects on microstructure and mechanical properties, were rarely reported. Therefore, in this work the microstructures of low Si grade Nb-Ti microalloying TRIP steel under different ultra-fast continuous annealing conditions were observed via EBSD and TEM, and the tensile properties were discussed. The results show that the polygonal ferrite is refined by heating rate of 100 ℃/s and short asutempering procedure. The dispersive and fine microalloyed carbonitrides formed during the hot-rolling stage are reserved. Therefore, the strength and ductility are enhanced simultaneously. The slow cooling procedure can effectively contribute to eliminate the yield point, while the strength is slightly decreased. As the annealing temperature increasing, the strength is enhanced. When the annealing temperature is 830 ℃, the morphology of retained austenite consists of alternated film and bainite-ferrite plates, resulting in optimal combination of strength and ductility: tensile strength 748 MPa, yield strength 408 MPa, uniform elongation 21.3%, work hardening exponent 0.27, balance of strength and ductility is 15932.4 MPa·%.

Key words:  ultra-fast continuous annealing      slow cooling procedure      grain refinement      retained austenite      Nb-Ti microalloying     
ZTFLH:  TG161  
Fund: Supported by National High Technology Research and Development Program of China (No.2013AA031302) and Fundamental Research Funds for the Central Universities (No.090307004)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00623     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/515

Fig.1  

连续退火工艺示意图

Process RP0.2
MPa
Rm
MPa
duniform
%
n Rp0.2/Rm Rm×δuniform
MPa·%
Volume fraction of retained austenite / %
I 436 743 19.7 0.26 0.58 14637.1 4.46
II 358 682 19.6 0.25 0.52 13367.2 4.12
III 408 748 21.3 0.27 0.54 15932.4 4.02
Table 1  Mechanical properties and volume fraction of retained austenite of the steel after different continuous annealing processes
Fig.2  

不同连续退火工艺下钢的SEM像

Fig.3  

不同连续退火试样的拉伸工程应力-应变曲线

Fig.4  

不同连续退火工艺下钢的晶界分布图

Fig.5  

不同工艺条件下的EBSD定量分析

Fig.6  

不同工艺条件下残余奥氏体分布EBSD分析

Fig.7  

工艺III试样中残余奥氏体的TEM明场像、暗场像和衍射斑标定

Fig.8  

工艺III试样中贝氏体板条间残余奥氏体的TEM明场像及其与贝氏体铁素体取向关系分析

Fig.9  

工艺III试样中各相组织和位错的TEM形貌及残余奥氏体的选区衍射

Fig.10  

工艺III试样中析出相的TEM像及其EDS分析

Fig.11  Microstructures of the steel after hot rolling (a) and cold rolling (b)
Fig.12  Thermal expansion curve of the steel with different heating rates(Ac10.5 and Ac30.5 represent the critical temperatures under 0.5 ℃/s heating rate, Ac1100 and Ac3100 represent the critical temperatures under 100 ℃/s heating rate)
[1] Jimenez-Melero E, Van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, Zwaag S. Acta Mater, 2009; 57: 533
[2] Etienne G, Anne M, Pascal J, Yvan H, Bert V, Jan V H. Scr Mater, 2001; 44: 885
[3] Tirumalasetty G K, Van Huis M A, Fang C M, Xu Q, Tichelaar F D, Hanlon D N, Sietsma J, Zandbergen H W. Acta Mater, 2011; 59: 7406
[4] Wang C J, Sun X J, Yong Q L, Li Z D, Zhang X, Jiang L. Acta Metall Sin, 2013; 49: 399
(王长军, 孙新军, 雍岐龙, 李昭东, 张 熹, 江 陆. 金属学报, 2013; 49: 399)
[5] Shanmugam S, Ramisetti N K, Misra R D K, Hartmann J, Jansto S G. Mater Sci Eng, 2008; A478: 26
[6] Xu Y B, Hou X Y, Wang Y Q, Wu D. Acta Metall Sin, 2012; 48: 176
(徐云波, 侯晓英, 王业勤, 吴 迪. 金属学报, 2012; 48: 176)
[7] Jacoues P J, Girault E, Harlef P, Delannay F. ISIJ Int, 2001; 41: 1061
[8] Luo H W, Zhao L, Kruijver S O, Sietsma J, Zwaag S V D. ISIJ Int, 2003; 43: 1219
[9] Eui P K, Shun F, Kozo S, Shigeru S. Mater Sci Eng, 2011; A528: 5007
[10] Chiang J, Lawrence B, Boyd J D K, Pilkey A K. Mater Sci Eng, 2011; A528: 4516
[11] Liu J Y, Zhang Z C, Zhu F X, Li Y M, Manabe K I. J Iron Steel Res Int, 2012; 19: 41
[12] Zhang W N, Liu Z Y, Wang G D. Acta Metall Sin, 2010; 46: 1230
(张维娜, 刘振宇, 王国栋. 金属学报, 2010; 46: 1230)
[13] Funakawa Y, Shiozaki T, Tomita K, Yamamoto T, Maeda E. ISIJ Int, 2004; 44: 1945
[14] Chen J, Lv M Y, Tang S, Liu Z Y, Wang G D. Mater Sci Eng, 2014; A594: 389
[15] Lan H F, Du L X, Wang X N, Liu X H. Steel Res Int, 2012; 83: 139
[16] Wang X P, Du L X, Zhou M. J Northeastern Univ (Nat Sci), 2012; 33: 1137
(王晓鹏, 杜林秀, 周 民. 东北大学学报(自然科学版), 2012; 33: 1137)
[17] Asoo K, Tomota Y, Harjo S, Okitsu Y. ISIJ Int, 2011; 51: 145
[18] Han D, Sun X J, Hui W J, Zhang S L, Shi J, Wang M Q. ISIJ Int, 2008; 48: 1126
[19] Sugimoto K, Murata M, Muramatsu T, Mukai Y. ISIJ Int, 2007; 47: 1357
[20] Lee C G, Kim S J, Oh C S, Lee S. ISIJ Int, 2002; 42: 1162
[21] Zwaag S, Wang J. Scr Mater, 2002; 47: 169
[22] Cui Z Q,Qin Y C. Metallography and Heat Treatment. Beijing: China Machine Press, 2007: 262
(崔忠圻,覃耀春. 金属学与热处理. 北京: 机械工业出版社, 2007: 262)
[23] Tirumalasetty G K, Van Huis M A, Kwakernaak C, Sietsma J, Sloof W G, Zandbergen H W. Acta Mater, 2012; 60: 1311
[24] Jimenez-Melero E, Van Dijk N H, Zhao L, Sietsma J, Offerman S E, Wright J P, Zwaag S. Acta Mater, 2007; 55: 6713
[25] Zaefferer S, Ohlert J, Bleck W. Acta Mater, 2004; 52: 2765
[1] LI Xiaobing, QIAN Kun, SHU Lei, ZHANG Mengshu, ZHANG Jinhu, CHEN Bo, LIU Kui. Effect of W Content on the Phase Transformation Behavior in Ti-42Al-5Mn- xW Alloy[J]. 金属学报, 2023, 59(10): 1401-1410.
[2] WU Guohua, TONG Xin, JIANG Rui, DING Wenjiang. Grain Refinement of As-Cast Mg-RE Alloys: Research Progress and Future Prospect[J]. 金属学报, 2022, 58(4): 385-399.
[3] LIU Jie, XU Le, SHI Chao, YANG Shaopeng, HE Xiaofei, WANG Maoqiu, SHI Jie. Effect of Rare Earth Ce on Sulfide Characteristics and Microstructure in Non-Quenched and Tempered Steel[J]. 金属学报, 2022, 58(3): 365-374.
[4] DING Ning, WANG Yunfeng, LIU Ke, ZHU Xunming, LI Shubo, DU Wenbo. Microstructure, Texture, and Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy by Multi-Directional Forging at High Strain Rate[J]. 金属学报, 2021, 57(8): 1000-1008.
[5] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[6] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[7] LI Xiucheng,SUN Mingyu,ZHAO Jingxiao,WANG Xuelin,SHANG Chengjia. Quantitative Crystallographic Characterization of Boundaries in Ferrite-Bainite/Martensite Dual-Phase Steels[J]. 金属学报, 2020, 56(4): 653-660.
[8] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Jun,JIE Ziqi,HUANG Taiwen,YANG Wenchao,LIU Lin,FU Hengzhi. Research and Development of Equiaxed Grain Solidification and Forming Technology for Nickel-Based Cast Superalloys[J]. 金属学报, 2019, 55(9): 1145-1159.
[11] Liping DENG,Kaixuan CUI,Bingshu WANG,Hongliang XIANG,Qiang LI. Microstructure and Texture Evolution of AZ31 Mg Alloy Processed by Multi-Pass Compressing Under Room Temperature[J]. 金属学报, 2019, 55(8): 976-986.
[12] Yaqiang TIAN,Geng TIAN,Xiaoping ZHENG,Liansheng CHEN,Yong XU,Shihong ZHANG. C and Mn Elements Characterization and Stability of Retained Austenite in Different Locations ofQuenching and Partitioning Bainite Steels[J]. 金属学报, 2019, 55(3): 332-340.
[13] Chengwei SHAO, Weijun HUI, Yongjian ZHANG, Xiaoli ZHAO, Yuqing WENG. Microstructure and Mechanical Properties of a Novel Cold Rolled Medium-Mn Steel with Superior Strength and Ductility[J]. 金属学报, 2019, 55(2): 191-201.
[14] WAN Xiangliang, HU Feng, CHENG Lin, HUANG Gang, ZHANG Guohong, WU Kaiming. Influence of Two-Step Bainite Transformation on Toughness in Medium-Carbon Micro/Nano-Structured Steel[J]. 金属学报, 2019, 55(12): 1503-1511.
[15] Dong PAN, Yuguang ZHAO, Xiaofeng XU, Yitong WANG, Wenqiang JIANG, Hong JU. Effect of High-Energy and Instantaneous Electropulsing Treatment on Microstructure and Propertiesof 42CrMo Steel[J]. 金属学报, 2018, 54(9): 1245-1252.
No Suggested Reading articles found!