Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (7): 769-776    DOI: 10.3724/SP.J.1037.2013.00621
Current Issue | Archive | Adv Search |
EFFECT OF ALUMINUM ON THE SOLIDIFICATION MICROSTRUCTURE OF M2 HIGH SPEED STEEL
ZHOU Xuefeng1,*(), FANG Feng1, TU Yiyou1, JIANG Jianqing1, XU Huixia2, ZHU Wanglong2
1 Jiangsu Key Laboratory of Advanced Metallic Materials, Southeast University, Nanjing 211189
2 Jiangsu Engineering Research Center of Tool and Die Steel, Tiangong Group, Danyang 212312
Cite this article: 

ZHOU Xuefeng, FANG Feng, TU Yiyou, JIANG Jianqing, XU Huixia, ZHU Wanglong. EFFECT OF ALUMINUM ON THE SOLIDIFICATION MICROSTRUCTURE OF M2 HIGH SPEED STEEL. Acta Metall Sin, 2014, 50(7): 769-776.

Download:  HTML  PDF(8944KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of aluminum on the solidification microstructure of M2 high speed steel, particularly the morphology and microstructure of eutectic carbides, has been investigated by OM, TEM, SEM, EBSD and XRD. The results show that the as-cast microstructure consists of dislocation martensite and M2C eutectic ledeburite. Excessive amount of aluminum, 1.2%, favors the formation of ferrite and needle-like carbides. After the addition of aluminum, eutectic carbides are distributed more homogeneously. Additionally, the morphology of M2C eutectic carbides transforms from the fibrous to the plate-like, and their microstructure also changes significantly. The plate-like M2C has crystal defects, such as micro-twins and stacking faults, and different growing orientation between adjacent plates whereas the fibrous carbides have few defects and single crystal orientation. Compared to fibrous carbides, the plate-like carbides are much difficult to get spheroidized at high temperature, which is unfavorable for carbide refinement. The ferrite, formed by adding excessive amount of aluminum, cannot be eliminated by ordinary heat treatments, decreasing remarkably the hardness of high speed steel after quenching.

Key words:  M2 high speed steel      aluminum      solidification microstructure      M2C eutectic carbide      microstructure     
Received:  30 September 2013     
ZTFLH:  TG142.7  
Fund: Supported by National Natural Science Foundation of China (Nos.51301038, 51201031 and 51371050) and Fund of Transformation of Scientific and Technological Achievements from Jiangsu Province (No.BA2010139)
About author:  Correspondent: ZHOU Xuefeng, lecturer, Tel: (025)52090636, E-mail: xuefengzhou@seu.edu.cn

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00621     OR     https://www.ams.org.cn/EN/Y2014/V50/I7/769

Fig.1  

不同Al添加量的M2高速钢的OM像

Fig.2  

不同Al添加量的M2高速钢基体的TEM像及SAED谱

Fig.3  

不同Al添加量的M2高速钢碳化物分布

Fig.4  

不同Al添加量的M2高速钢中共晶碳化物形貌

Fig.5  

不同Al添加量的M2高速钢中共晶碳化物三维形貌

Sample W Mo V Cr Fe
0%Al, FC 33.4 17.2 6.5 5.1 36.4
0.6%Al, PC 39.8 21.6 9.4 5.7 22.5
1.2%Al, PC 42.1 22.3 9.8 5.5 19.3
1.2%Al, NC 40.2 21.2 6.0 4.7 26.8
表1  不同形貌碳化物的化学成分
Fig.6  

不同形貌碳化物的TEM明场像

Fig.7  

M2C共晶碳化物背散射电子衍射像及Kikuchi花样

Fig.8  

不同Al添加量的M2高速钢碳化物粉末的XRD谱

Fig.9  

M2高速钢1100 ℃加热2 h后的SEM像

Fig.10  

1100 ℃加热2 h后M2高速钢中碳化物的XRD谱

[1] Moon H K, Lee K B, Kwon H. Mater Sci Eng, 2008; A474: 328
[2] Wang R, Andren H O, Wisell H, Dunlop G L. Acta Metall Mater, 1992; 40: 1727
[3] Dobrzanski L A, Kasprzak W. J Mater Process Technol, 2001; 109: 52
[4] Liu G L, Zhang G Y, Zeng M G, Qian C F. Chin J Mech Eng, 2002; 38: 149
(刘贵立, 张国英, 曾梅光, 钱存富. 机械工程学报, 2002; 38: 149)
[5] Yang R C, Zhao L M, Wang B, Chen K. Trans Mater Heat Treat, 2009; 30: 185
(杨瑞成, 赵丽美, 王 彬, 陈 奎. 材料热处理学报, 2009; 30: 185)
[6] Xu Z Y. Mater Mech Eng, 1993; 17(2): 4
(徐祖耀. 机械工程材料, 1993; 17(2): 4)
[7] Qian X R, Liu R Y, Liu K. J Chin Electron Microsc Soc, 1986; 3: 151
(钱小蓉, 刘荣运, 刘 可. 电子显微学报, 1986; 3: 151)
[8] Boccalini M, Goldenstein H. Int Mater Rev, 2001; 46: 92
[9] Hetzner D W. Mater Charact, 2001; 46: 175
[10] Liu J T, Chang H B, Wu R H, Hsu T Y, Ruan X Y. Mater Charact, 2000; 45: 175
[11] Fredriksson H, Hillert M, Nica M. Scand J Metall, 1979; 8: 115
[12] Fischmeister H F, Riedl R, Karagoz S. Metall Trans, 1989; A20: 2133
[13] Lee E S, Park W J, Baik K H, Ahn S. Scr Mater, 1998; 39: 1133
[14] Zhou X F, Fang F, Li F, Jiang J Q. J Mater Sci, 2011; 46: 1196
[15] Zhou X F, Fang F, Li G, Jiang J Q. ISIJ Int, 2010; 50: 1151
[16] Li Y J, Jiang Q C, Zhao Y G, He Z M. Scr Mater, 1997; 37: 173
[17] Li Y J, Jiang Q C, He Z M, Zhao Y G, Ge L H. Chin J Mater Res, 1997; 11: 216
(李彦君, 姜启川, 何镇明, 赵宇光, 葛僚海. 材料研究学报, 1997; 11: 216)
[18] Zhao Y Q, Jiang Q C, Zhao Y G, Li Y J, Jiang Z L. J Jilin Univ Technol, 1997; 27: 28
(赵玉谦, 姜启川, 赵宇光, 李彦君, 蒋自力. 吉林工业大学学报, 1997; 27: 28)
[19] Zhou X F, Fang F, Jiang J Q. Foundry Technol, 2009; 30: 160
(周雪峰, 方峰, 蒋建清. 铸造技术, 2009; 30: 160)
[20] Mclaughlin J, Kraft R W, Goldstein J I. Metall Trans, 1977; 8A: 1787
[21] Wu C J,Chen G L,Qiang W J. Metal Science. Beijing: Metallurgical Industry Press, 2003: 3
(吴承建,陈国良,强文江. 金属材料学. 北京: 冶金工业出版社, 2003: 3)
[22] Cui X H, Wang S Q, Wu H, Jiang Q C. J Jilin Univ Technol, 2002; 32: 42
(崔向红, 王树奇, 吴 宏, 姜启川. 吉林工业大学学报, 2002; 32: 42)
[23] Li Y J, Jiang Q C, Zhao Y G, He Z M, Zhong X Y. Acta Metall Sin, 1999; 35: 207
(李彦君, 姜启川, 赵宇光, 何镇明, 钟雪友. 金属学报, 1999; 35: 207)
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[11] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[12] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[13] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[14] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!