Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (5): 547-554    DOI: 10.3724/SP.J.1037.2013.00458
Current Issue | Archive | Adv Search |
INFLUENCE OF Cu ON MICROSTRUCTURES AND WEAR RESISTANCE OF STELLITE 12 MATRIX LASER ALLOYING COATINGS ON TA15-2 TITANIUM ALLOY
LI Jianing1,2, GONG Shuili1(), WANG Juan3, SHAN Feihu1, LI Huaixue1, WU Bing1
1 Science and Technology on Power Beam Processes Laboratory, Beijing Aeronautical Manufacturing Technology Research Institute, Beijing 100024
2 Beijing Institute of Aeronautical Materials, Beijing 100095
3 School of Materials Science and Engineering, Shandong University, Jinan 250061
Cite this article: 

LI Jianing, GONG Shuili, WANG Juan, SHAN Feihu, LI Huaixue, WU Bing. INFLUENCE OF Cu ON MICROSTRUCTURES AND WEAR RESISTANCE OF STELLITE 12 MATRIX LASER ALLOYING COATINGS ON TA15-2 TITANIUM ALLOY. Acta Metall Sin, 2014, 50(5): 547-554.

Download:  HTML  PDF(10728KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Coaxial powder feeding laser alloying of the Stellite 12-B4C mixed powders on an aviation material TA15-2 titanium alloy substrate can form a wear resistance composite coating. Investigation indicated that the Cu addition promoted a great quantity of the ultrafine nanoscale polycrystals and amorphous phases to be produced in such coating, leading to an improvement of wear resistance. The nanocrystallization process of Cu on laser clad coatings, i.e. and the process of the productions of the nanoscale polycrystals, and also the AlCu2Ti ultrafine nanocrystals which were produced through in situ chemical reaction in laser molten pool retarded greatly growth of the particles. The coating with Cu mainly consisted of γ-Co, M12C, M23C6, W-C, Ti-B, AlCu2Ti and also the amorphous phases. AlCu2Ti ultrafine nanocrystals owned the high diffusibility in such high temperature molten pool, causing the lattice distortions, which also played an important amorphization effect on such coating.

Key words:  laser alloying      surface reinforcement      wear property      amorphous      nanocrystal     
Received:  29 July 2013     
ZTFLH:  TG132  
Fund: Supported by National Natural Science Foundation of China (No.51175035) and China Postdoctoral Science Fuondation Funded Project (No.2012M520135)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00458     OR     https://www.ams.org.cn/EN/Y2014/V50/I5/547

Fig.1  

样品1与2中激光合金化层的SEM像

Fig.2  

样品2中涂层宏观SEM像与EDS图

Fig.3  

样品2中涂层的TEM像及其对应的SAED谱与HRTEM像

Fig.4  

样品1与2中激光合金化涂层的XRD谱

Fig.5  

样品2中涂层的TEM像和SAED谱

Fig.6  

样品1与2中激光合金化涂层的显微硬度分布

Fig.7  

涂层的摩擦系数随时间和载荷量变化曲线

Fig.8  

基材与激光合金化涂层磨损体积随时间变化

Fig.9  

TA15-2合金与涂层的磨损形貌

[1] Mao X N, Zhao Y Q, Yang G J. Rare Met Lett, 2007; 26(5): 1
(毛小南, 赵永庆, 杨冠军. 稀有金属快报, 2007; 26(5): 1)
[2] Li J N, Gong S L, Liu H, Li H X. Mater Lett, 2013; 92: 235
[3] Yue T M, Su Y P. Appl Surf Sci, 2008; 255: 1692
[4] Gu D D, Meng G B, Li C, Meiners W, Poprawe R. Scr Mater, 2012; 67: 185
[5] Li J N, Gong S L. Physica, 2013; 47E: 193
[6] Zhang S, Zhang C H. Acta Metall Sin, 2002; 38: 1100
(张 松, 张春华. 金属学报, 2002; 38: 1100)
[7] Wu X L, Hong Y S. Surf Coat Technol, 2001; 141: 141
[8] Zhu Y Y, Li Z G, Li R F, Li M, Daze X L, Feng K, Wu Y X. Appl Surf Sci, 2013; 280: 50
[9] Yarrapareddy E, Kovacevic R. Surf Coat Technol, 2008; 202: 1951
[10] Adraider Y, Pang Y X, Nabhani F, Hodgson S N, Zhang Z Y. Surf Coat Technol, 2011; 205: 5345
[11] Li Y Z, Wang C S, Li T, Yao B. Chin J Lasers, 2010; 37: 1356
(李耀忠, 王存山, 李 婷, 姚 标. 中国激光, 2010; 37: 1356)
[12] Wang H Y. Trans Nonferrous Met Soc China, 2011; 21: 1322
[13] Sebastiani M, Mangione V, De Felicis D, Bemporad E, Carassiti F. Wear, 2012; 290-291(30): 10
[14] Radu I, Li D Y. Wear, 2005; 259: 453
[15] Li J N, Gong S L, Yu H J, Chen C Z. J Phys Chem, 2013; 117C: 4568
[16] Dai Q X. Metal Material Science. Beijing: Chemical Industry Press, 2005: 36
(戴起勋. 金属材料学. 北京: 化学工业出版社, 2005: 36)
[17] Guo B G, Zhou J S, Zhang S T, Zhou H D, Pu Y P, Chen J M. Appl Surf Sci, 2007; 253: 9301
[18] Shi S H, Fu G Y. Heat Treatment Met, 1999; (3): 14
(石世宏, 傅戈雁. 金属热处理, 1999; (3): 14)
[19] Li J N, Chen C Z, Zhang C F. Mater Res Innovat, 2011; 15: 344
[20] Zhang B W. Physical Fundamentals of Nanomaterials. Beijing: Chemical Industry Press, 2009: 110
(张邦维. 纳米材料物理基础. 北京: 化学工业出版社, 2009: 110)
[21] Wang J F,Fan X H,Zhang C J. Solid State Physics. Jinan: Shandong University Press, 2003: 163
(王矜奉,范希会,张承琚. 固体物理. 济南: 山东大学出版社, 2003: 163)
[22] Wang H Y, Zuo D W, Wang M D, Shao J B. Acta Metall Sin, 2009; 45: 971
(王宏宇, 左敦稳, 王明娣, 邵建兵. 金属学报, 2009; 45: 971)
[1] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[2] LIU Shuaishuai, HOU Chaonan, WANG Engang, JIA Peng. Plastic Rheological Behaviors of Zr61Cu25Al12Ti2 and Zr52.5Cu17.9Ni14.6Al10Ti5 Amorphous Alloys in the Supercooled Liquid Region[J]. 金属学报, 2022, 58(6): 807-815.
[3] LI Jinfu, LI Wei. Structure and Glass-Forming Ability of Al-Based Amorphous Alloys[J]. 金属学报, 2022, 58(4): 457-472.
[4] ZHANG Jinyong, ZHAO Congcong, WU Yijin, CHEN Changjiu, CHEN Zheng, SHEN Baolong. Structural Characteristic and Crystallization Behavior of the (Fe0.33Co0.33Ni0.33)84 -x Cr8Mn8B x High-Entropy-Amorphous Alloy Ribbons[J]. 金属学报, 2022, 58(2): 215-224.
[5] HAN Luhui, KE Haibo, ZHANG Pei, SANG Ge, HUANG Huogen. Kinetic Crystallization Behavior of Amorphous U60Fe27.5Al12.5 Alloy[J]. 金属学报, 2022, 58(10): 1316-1324.
[6] BI Jiazi, LIU Xiaobin, LI Ran, ZHANG Tao. Tribological Properties of Polyalphaolefin (PAO6) Lubricant Modified with Particles Additives of Metallic Glass[J]. 金属学报, 2021, 57(4): 559-566.
[7] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
[8] WANG Yihan, YUAN Yuan, YU Jiabin, WU Honghui, WU Yuan, JIANG Suihe, LIU Xiongjun, WANG Hui, LU Zhaoping. Design for Thermal Stability of Nanocrystalline Alloys Based on High-Entropy Effects[J]. 金属学报, 2021, 57(4): 403-412.
[9] HU Xiang, GE Jiacheng, LIU Sinan, FU Shu, WU Zhenduo, FENG Tao, LIU Dong, WANG Xunli, LAN Si. Combustion Mechanism of Fe-Nb-B-Y Amorphous Alloys with an Anomalous Exothermic Phenomenon[J]. 金属学报, 2021, 57(4): 542-552.
[10] LI Xiaoqian, WANG Fuguo, LIANG Aimin. Effect of Spraying Process on Microstructure and Tribological Properties of Ta2O5 In Situ Composite Nanocrystalline Ta-Based Coatings[J]. 金属学报, 2021, 57(2): 237-246.
[11] ZHU Min, OUYANG Liuzhang. Kinetics Tuning and Electrochemical Performance of Mg-Based Hydrogen Storage Alloys[J]. 金属学报, 2021, 57(11): 1416-1428.
[12] HUANG Huogen, ZHANG Pengguo, ZHANG Pei, WANG Qinguo. Comparison of Glass Forming Ability Between U-Co and U-Fe Base Systems[J]. 金属学报, 2020, 56(6): 849-854.
[13] ZHAO Yanchun, MAO Xuejing, LI Wensheng, SUN Hao, LI Chunling, ZHAO Pengbiao, KOU Shengzhong, Liaw Peter K.. Microstructure and Corrosion Behavior of Fe-15Mn-5Si-14Cr-0.2C Amorphous Steel[J]. 金属学报, 2020, 56(5): 715-722.
[14] GENG Yaoxiang, WANG Yingmin. Local Structure-Property Correlation of Fe-Based Amorphous Alloys: Based on Minor Alloying Research[J]. 金属学报, 2020, 56(11): 1558-1568.
[15] XU Xiuyue, LI Yanhui, ZHANG Wei. Fabrication of Nanoporous PtRuFe by Dealloying Amorphous Fe(Pt, Ru)B Ribbons and Their Methanol Electrocatalytic Properties[J]. 金属学报, 2020, 56(10): 1393-1400.
No Suggested Reading articles found!