Please wait a minute...
Acta Metall Sin  2014, Vol. 50 Issue (1): 79-87    DOI: 10.3724/SP.J.1037.2013.00216
Original Articles Current Issue | Archive | Adv Search |
HOT CORROSION RESISTANCE OF FILLER ALLOY BCo46
JING Yanhong, LIU Enze(), ZHENG Zhi, TONG Jian, Ning Likui, HE Ping
Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016
Cite this article: 

JING Yanhong, LIU Enze, ZHENG Zhi, TONG Jian, Ning Likui, HE Ping. HOT CORROSION RESISTANCE OF FILLER ALLOY BCo46. Acta Metall Sin, 2014, 50(1): 79-87.

Download:  HTML  PDF(10964KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

DZ468 alloy is a promising candidate in turbine blade serving in marine atmosphere because of its superior mechanical properties and good hot corrosion resistance. And brazing technology is indispensable to produce turbine blade because of its complicated hollow structure. Therefore, for accelerating the application of DZ468 superalloy, a new type Co-based filler named BCo46 was developed. Due to serving in marine atmosphere, the attack of hot corrosion can be inevitable. Frequently, the quality of turbine blade depends on the joining region, and the joining region has a lot to do with the filler used to braze the base alloy. Therefore, in this work, the hot corrosion behavior and mechanism of BCo46 alloy in the mixture of 75%Na2SO4 + 25%NaCl (mass fraction) at 900 ℃ was investigated, and compared with a common Ni-based filler BNi-2, and the base alloy DZ468. Moreover, the hot corrosion resistance of the joint bonded with BCo46 was evaluated. XRD, SEM, EDS and ICP spectrograph were employed to study the corrosion products of the tested alloys. The results show that the hot corrosion processes of BCo46, BNi-2 and DZ468 alloys are all accompanied with the dissolution of oxide scale and the formation of sulfide, which support the model of sulfidation-(acid-based) melting model. For filler alloy BCo46, Cr2O3, Co3BO5 and (Ni, Co)Cr2O4 mainly exist in the outer corrosion layer and some CrS is formed in the inner corrosion layer; the external corrosion products of BNi-2 are NiO, (Ni, Co)Cr2O4, Ni2FeBO5 and Cr2O3, and the internal precipitation is Ni2S3. The hot corrosion resistance of filler alloy BCo46 is superior to DZ468 superalloy and BNi-2 filler, it is because (1) BCo46 contains 22% Cr which can form dense and continuous oxide scale Cr2O3; (2) the diffusion rates of O and S are slower in Co- than Ni-based alloy; (3) Co can increase the adhesion of the oxide scale-base metal; (4) collaboration dissolution doesn't occur in BCo46. Furthermore, the formation of boride can deteriorate the hot corrosion resistance of alloy by forming oxides of boron which can dissolve oxide scale, consume Cr and increase phase interfacial area to accelerate the diffusion of S and O. The joint after heat treatment can reach the level of the hot corrosion resistance of the base metal DZ468.

Key words:  BCo46      DZ468      hot corrosion      filler     
Received:  25 April 2013     
ZTFLH:  TG146  

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2013.00216     OR     https://www.ams.org.cn/EN/Y2014/V50/I1/79

Alloy Al Mo W Co Cr Ti Ta Re C B Fe Si Ni
BCo46 - - 10 Bal. 22 - - - - 2 - - 20
BNi-2 - - - - 7 - - - - 3 3 4.5 Bal.
DZ468 5.2 1 5 8.5 12 0.5 5 2 0.06 0.01 - - Bal.
表1  BCo46, BNi-2和DZ468合金的化学成分
Fig.1  

钎焊接头示意图

Fig.2  

BCo46, BNi-2和DZ468合金的微观组织

Fig.3  

DZ468, BCo46和BNi-2合金在900 ℃的75%Na2SO4+25%NaCl盐中腐蚀不同时间的宏观形貌

Fig.4  

BCo46, BNi-2和DZ468合金在900 ℃的75%Na2SO4+25%NaCl盐中腐蚀120 h的动力学曲线

Fig.5  

BCo46合金在900 ℃的75%Na2SO4+25%NaCl盐中腐蚀5, 20和80 h的XRD谱

Fig.6  

BNi-2合金在900 ℃的75%Na2SO4+25%NaCl盐中腐蚀20 h的XRD谱

Fig.7  

BCo46和BNi-2合金在900 ℃的75%Na2SO4+25%NaCl盐中腐蚀50 h的截面SEM形貌和微区成分

Fig.8  

热处理后的焊接接头的SEM形貌和线扫描EDS谱

Alloy Cr Ni B
BCo46 13.6 0.51 2
BNi-2 61.9 0.74 61
表2  BCo46和BNi-2合金在900 ℃的75%Na2SO4+25%NaCl盐中腐蚀80 h的样品清洗溶液分析结果
Fig.9  

焊接接头在900 ℃的75%Na2SO4+25%NaCl盐中腐蚀30 h的截面SEM形貌

Fig.10  

氧化膜在1200 K, 105 Pa O2条件下在Na2SO4中的溶解度[21,22]

[1] Zhao D Z.Equip Environ Eng, 2011; 8(5): 100
(赵德孜. 装备环境工程, 2011; 8(5): 100)
[2] Ning L K, Zheng Z, Tan Y, Liu E Z, Tong J, Yu Y S, Wang H.Acta Metall Sin, 2009; 45:161
(宁礼奎, 郑 志, 谭 毅, 刘恩泽, 佟 健, 于永泗, 王 华. 金属学报, 2009; 45: 161)
[3] Liu E Z, Sun S C, Tu G F, Zheng Z, Ning L K, Zhang L F.Acta Metall Sin, 2009; 45: 1217
(刘恩泽, 孙树臣, 涂赣峰, 郑 志, 宁礼奎, 张凌峰. 金属学报, 2009; 45: 1217)
[4] Jing Y H,Zheng Z,Liu E Z,Guo Y. J Mater Sci Technol, 2014; 30(in press)
[5] Stringer J.Mater Sci Technol, 1987; 3: 482
[6] Lee W H, Lin R Y.Mater Chem Phys, 2002; 77: 86
[7] Li M H, Sun X F, Hu W Y, Guan H R, Chen S G. Oxid Met, 2006; 65: 137
[8] Simons E L, Browning G V, Liebhafsky H A.Corrosion, 1955; 11: 505
[9] Zhu R Z, Zuo Y, Guo M J.Acta Matell Sin, 1985; 21: 451
(朱日彰, 左 禹, 郭曼玖. 金属学报, 1985; 21: 451)
[10] Bornstein N S, Decrescent M A.Trans AIME, 1969; 245: 583
[11] Quets J M, Dresher W H.J Mater, 1969; 4: 583
[12] Rapp R A, Goto K S. In: Braunstein J, Selman J R eds., Proceedings of the Second International Symposium on Molten Salts, Pennington: the Electrochemical society, 1981: 159
[13] Park C O, Rapp R A.Electrochem Sci Technol, 1986; 133: 1636
[14] Tzvetkoff T Z, Girginov A.J Mater Sci, 1995; 30: 5561
[15] Liu E Z, Sun S C.Heat Treat Met, 2009; 34(6): 84
(刘恩泽, 孙树臣. 金属热处理, 2009; 34(6): 84)
[16] Lu S P, Guo Y, Chen L S.Mater Rev, 1999; 13(6): 58
(陆善平, 郭 义, 陈亮山. 材料导报, 1999; 13(6): 58)
[17] Zhuang H S,Lugscheider E. High Temperature Brazing. Beijing: National Defence Industry Press, 1989: 46
(庄鸿寿,Lugscheider E. 高温钎焊. 北京: 国防工业出版社, 1989: 46)
[18] Ning L K. Master Thesis, Dalian University of Technology, 2008
(宁礼奎. 大连理工大学硕士学位论文, 2008)
[19] Fryburg G C, Kohl F J, Stearns C A.J Electrochem Soc, 1984; 131: 2985
[20] Fryburg G C, Kohl F J, Stearns C A.J Electrochem Soc, 1982; 129: 571
[21] Gupta D K.J Electrochem Soc, 1980; 127: 2194
[22] Rapp R A.Mater Sci Eng, 1987; 87: 568
[23] Li T F. High Temperature Oxidation and Hot Corrosion of Metal. Beijing: Chemical Industrial Press, 2003: 203
(李铁藩. 金属高温氧化和热腐蚀. 北京: 化学工业出版社, 2003: 203)
[24] Guan D L, Lu Z H, Xiao Y T, Shi C X.J Chin Soc Corros Prot, 1981; 1: 49
(关德林, 陆之汉, 肖耀天, 师昌绪. 中国腐蚀与防护学报, 1981; 1: 49)
[25] Goebel J A, Pettit F S.Metall Trans, 1970; 1: 1943
[26] Beltran A M. Superalloys II. New York: Wiley, 1987: 135
[27] Chao J H, Kim T W, Son K S.Met Mater Int, 2003; 9: 303
[1] WANG Di, WANG Dong, XIE Guang, WANG Li, DONG Jiasheng, CHEN Lijia. Influence of Pt-Al Coating on Hot Corrosion Resistance Behaviors of a Ni-Based Single-Crystal Superalloy[J]. 金属学报, 2021, 57(6): 780-790.
[2] ZHAO Xu,SUN Yuan,HOU Xingyu,ZHANG Hongyu,ZHOU Yizhou,DING Yutian. Effect of Orientation Deviation on Microstructure and Mechanical Properties of Nickel-Based Single Crystal Superalloy Brazing Joints[J]. 金属学报, 2020, 56(2): 171-181.
[3] Yimin LIAO, Min FENG, Minghui CHEN, Zhe GENG, Yang LIU, Fuhui WANG, Shenglong ZHU. Comparative Study of Hot Corrosion Behavior of theEnamel Based Composite Coatings and the ArcIon Plating NiCrAlY on TiAl Alloy[J]. 金属学报, 2019, 55(2): 229-237.
[4] GAO Bo, WANG Lei, SONG Xiu, LIU Yang, YANG Shuyu, CHIBA Akihiko. Effect of Pre-Oxidation on High Temperature Oxidation and Corrosion Behavior of Co-Al-W-Based Superalloy[J]. 金属学报, 2019, 55(10): 1273-1281.
[5] Chengyang JIANG, Yingfei YANG, Zhengyi ZHANG, Zebin BAO, Shenglong ZHU, Fuhui WANG. Preparation and Enhanced Hot Corrosion Resistance of aZr-Doped PtAl2+(Ni, Pt)Al Dual-Phase Coating[J]. 金属学报, 2018, 54(4): 581-590.
[6] Zhiwei NIU,Zheng YE,Kaikai LIU,Jihua HUANG,Shuhai CHEN,Xingke ZHAO. Microstructure and Property of Cu/Al Joint Brazed with Al-Si-Ge Filler Metal[J]. 金属学报, 2017, 53(6): 719-725.
[7] Yuan SUN,Jide LIU,Xingyu HOU,Guanglei WANG,Jinxia YANG,Tao JIN,Yizhou ZHOU. MICROSTRUCTURE EVOLUTION AND INTERFACIAL FORMATION MECHANISM OF WIDE GAP BRAZING OF DD5 SINGLE CRYSTAL SUPERALLOY[J]. 金属学报, 2016, 52(7): 875-882.
[8] Xin PENG, Sumeng JIANG, Xudong SUN, Jun GONG, Chao SUN. CYCLIC OXIDATION AND HOT CORROSION BEHAVIORS OF A GRADIENT NiCoCrAlYSi COATING[J]. 金属学报, 2016, 52(5): 625-631.
[9] SUN Yuan, LIU Jide, LIU Zhongming, YANG Jinxia, LI Jinguo,JIN Tao, SUN Xiaofeng. MICROSTRUCTURE EVOLUTION AND MECHANICAL PROPERTIES OF DD5 SINGLE CRYSTAL SUPERALLOY JOINT BRAZED BY Co—BASED FILLER ALLOY[J]. 金属学报, 2013, 49(12): 1581-1589.
[10] ZHANG Qingke, PEI Yinyin, LONG Weimin. INVESTIGATIONS ON FORMATION MECHANISMS OF BRAZING CRACKS AT THE AUSTENITIC STAINLESS STEEL/FILLER METAL BRAZING JOINT INTERFACES[J]. 金属学报, 2013, 49(10): 1177-1184.
[11] LU Xuyang, YU Daqian, JIANG Sumeng, LIU Shanchuan, GONG Jun, SUN Chao. HOT CORROSION BEHAVIOR OF A (NiCoCrAlYSiB+AlSiY) COMPOSITE COATING[J]. 金属学报, 2012, 48(4): 461-468.
[12] LV Jiaxin; ZHENG Lei; ZHANG Maicang; DONG Jianxin. CORROSION BEHAVIOR OF NICKEL BASE ALLOY FGH95 IN MOLTEN NaCl–Na2SO4[J]. 金属学报, 2009, 45(2): 204-210.
[13] NING Likui ZHENG Zhi TAN Yi LIU Enze TONG Jian YU Yongsi WANG Hua. STUDY ON HOT CORROSION RESISTANCE OF A NEW DIRECTIONAL SOLIDIFICATION Ni–BASED SUPERALLOY[J]. 金属学报, 2009, 45(2): 161-166.
[14] YAN Wei SUN Fengjiu WANG Qingjiang LIU Jianrong CHEN Zhiyong LI Shaoqiang. HOT CORROSION BEHAVIOR OF ARC-ION PLATING Ti-Al-Cr(Si, Y) COATINGS ON Ti60 ALLOY[J]. 金属学报, 2009, 45(10): 1171-1178.
[15] LIU Enze SUN Shunchen TU Ganfeng ZHENG Zhi NING Likui ZHANG Lingfeng . STUDY OF A NEW-TYPE HIGH STRENGTH Ni--BASED SUPERALLOY DZ68 WITH GOOD HOT CORROSION RESISTANCE[J]. 金属学报, 2009, 45(10): 1217-1224.
No Suggested Reading articles found!