Please wait a minute...
Acta Metall Sin  2013, Vol. 29 Issue (4): 457-463    DOI: 10.3724/SP.J.1037.2012.00729
Current Issue | Archive | Adv Search |
THE CORE-SHELL STRUCTURE OF Al70Bi11Sn19 IMMISCIBLE ALLOY PARTICLES
ZHANG Junfang1), WANG Yujin 2), LU Wenquan 1), ZHANG Shuguang 1), LI Jianguo 1)
1) School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
2) School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240
 
Cite this article: 

ZHANG Junfang, WANG Yujin,LU Wenquan, ZHANG Shuguang, LI Jianguo. THE CORE-SHELL STRUCTURE OF Al70Bi11Sn19 IMMISCIBLE ALLOY PARTICLES. Acta Metall Sin, 2013, 29(4): 457-463.

Download:  PDF(1477KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Immiscible alloys are well suited as functional materials, such as bearings, electrical contacts,switches and superconductors, etc. They usually suffer from heavy segregation under ordinary casting, which is resulted from the decomposition within the miscibility gap of a homogeneous liquid into two immiscible liquids generally with distinct density difference. But this characteristic provides an opportunity to in situ fabricate composites with core-shell morphology. In this study, Al/Sn-Bi core-shelled particles have been successfully prepared by phase separation of Al70Bi11Sn19 alloy. The morphology, microstructure, composition and phase transformation of the core-shelled particles were investigated by means of SEM, EDS and DSC. It reveals that the particle comprises an Al-rich core with a Sn-Bi hypoeutectic shell, displaying a two-stage melting characteristic. The morphology of particles varies with size. With increasing the particle size from 0.5 mm to 0.9 mm, the core-shell morphology turns from a crescent multi-core type into concentric or eccentric single-core types. Based on the simulation of temperature field of Al70Bi11Sn19 alloy droplets during solidification, the formation mechanism of the core-shell morphology has been discussed in detail, which is attributed to an outcome of the competition among the surface segregation, Marangoni and Stokes motions, Ostwald ripening and cooling rate.

Key words:  Al-Bi-Sn alloy      immiscible alloy      core-shell      structure     
Received:  10 December 2012     

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2012.00729     OR     https://www.ams.org.cn/EN/Y2013/V29/I4/457

[1] Ratke L, Diefenbach S.  Mater Sci Eng, 1995; R15: 263


[2] Xie H, Yang G C, La P Q, Hao W X, Fan J F, Liu W M, Xu L J.  Mater Charact, 2004; 52: 153

[3] Wang C P, Liu X J, Ohnuma I, Kainuma R, Ishida K.  Science, 2002; 297: 990

[4] Ohnuma I, Saegusa T, Takaku Y, Wang C P, Liu X J, Kainuma R, Ishida K.  J Electron Mater, 2009; 38: 2

[5] Jia J, Zhao J Z, Guo J J, Liu Y.  Immiscible Alloy and Preparation Technology.Harbin: Harbin Institute of Technology Press, 2002: 1

(贾均, 赵九洲, 郭景杰, 刘源. 难混溶合金及其制备技术. 哈尔滨: 哈尔滨工业大学出版社, 2002: 1)

[6] Wang C P, Liu X J, Takaku Y, Ohnuma I, Kainuma R, Ishida K.  Metall Mater Trans, 2004; 35A: 1243

[7] Wang C P, Liu X J, Shi R P, Shen C, Wang Y, Ohnuma I, Kainuma R, Ishida K.  Appl Phys Lett, 2007; 91: 141904

[8] Dai R R, Zhang S G, Guo X, Li J G.  Mater Lett, 2011; 65: 322

[9] Dai R R, Zhang S G, Guo X, Li J G.  J Electron Mater, 2011; 40: 2458

[10] Dai R R, Zhang S G, Guo X, Li J G.  J Alloys Compd, 2011; 509: 2289

[11] Wilde G, Perepezko J H.  Acta Mater, 1999; 47: 3009

[12] Li H L, Zhao J Z, He J.  Acta Metall Sin, 2007; 43: 659

(李海丽, 赵九洲, 何杰. 金属学报, 2007; 43: 659)

[13] Li Y S.  PhD Dissertation, Hunan University, Changsha, 2007

(李元山. 湖南大学博士学位论文, 长沙, 2007)

[14] Grobner J, Schmid-Fetzer R.  J Met, 2005; 57: 19

[15] Grobner J, Mirkovic D, Schmid-Fetzer R.  Acta Mater, 2005; 53: 3271

[16] Kaban I, Hoyer W.  Phys Rev, 2008; 77B: 125426

[17] Young N O, Goldstein J S, Block M J.  J Fluid Mech, 1959; 6: 350

[18] Ratke L, Voorhees P W.  Growth and Coarsening. New York: Springer-Verlag, 2002: 1


[20] Wakitani S.  J Phys: Conf Ser, 2007; 64: 012006

[21] Davis R H.  Int J Thermophys, 1986; 7: 609

[22] Zhang H W, Xian A P.  Acta Metall Sin, 2000; 36: 347

(张宏闻, 冼爱平. 金属学报, 2000; 36: 347)

[23] Qin T, Wang H P, Wei B B.  Sci China, 2007; 37G: 409

(秦涛, 王海鹏, 魏炳波. 中国科学, 2007; 37G: 409)

[24] Xu Z, Yao S S.  Theories of Materials Processing. Beijing: Science Press, 2003: 40

(徐洲, 姚寿山. 材料加工原理. 北京: 科学出版社, 2003: 40)

[25] Martin J W, Doherty R D, translated by Li X L.  Stability of Microstructure in Metallic Systems.Beijing: Science Press. 1984: 194

(Martin J W, Doherty R D著, 李新立 译. 金属系中显微结构的稳定性. 北京:科学出版社, 1984: 194)

[26] Shi R P, Wang C P, Wheeler D, Liu X J, Wang Y.  Acta Mater, 2013; 61: 1229
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[3] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[4] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[5] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[9] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[10] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[11] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[12] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[13] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[14] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[15] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
No Suggested Reading articles found!