Please wait a minute...
Acta Metall Sin  2012, Vol. 48 Issue (5): 593-600    DOI: 10.3724/SP.J.1037.2011.00590
论文 Current Issue | Archive | Adv Search |
EFFECT OF STRAIN RATE ON MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF A LOW C HIGH Mn TRIP/TWIP STEELS
WU Zhiqiang1, TANG Zhengyou1, LI Huaying1,ZHANG Haidong2
1. School of Materials and Metallurgy, Northeastern University, Shenyang 110819
2. MCC Capital Engineering & Research Incorporation Limited, Beijing 100176
Cite this article: 

WU Zhiqiang, TANG Zhengyou, LI Huaying,ZHANG Haidong. EFFECT OF STRAIN RATE ON MICROSTRUCTURE EVOLUTION AND MECHANICAL BEHAVIOR OF A LOW C HIGH Mn TRIP/TWIP STEELS. Acta Metall Sin, 2012, 48(5): 593-600.

Download:  PDF(3123KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The microstructure and mechanical properties of Fe--18Mn low carbon high manganese TRIP/TWIP steels during tensile tests in the range of initial strain rate of 1.67×10-4---103 s-1 at room temperature were studied. The inverse effect of strain rate on strength of steel was produced, the strength and ductility of steels decreased with increasing strain rate in the range of quasi--static tensile strain rate of 1.67×10-4---1.67×10-1 s-1. While inverse effect of strain rate on ductility of steels was produced in the range of dynamic tensile strain rate of 101---103 s-1, the strength and ductility of materials increased significantly with increasing strain rate. The tensile strength of high manganese TRIP/TWIP steels was 957 MPa and their elongation was 55.8%. These results indicated that Fe--18Mn steel had excellent mechanical properties and good fracture resistance. The higher the strain rates applied, the less martensite, the more directions of deformation twins. The microstructure evolution of the specimen was analyzed by SEM, TEM and XRD, martensitic transformation and deformation twins were produced during the tensile deformation, and adiabatic temperature rise effect made the matrix softening during the high--speed deformation.
Key words:  TRIP/TWIP steel      strain rate      microstructure evolution      martensitic transformation      deformation twin     
Received:  20 September 2011     
ZTFLH: 

TG142.41

 

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2011.00590     OR     https://www.ams.org.cn/EN/Y2012/V48/I5/593

[1] Zhang W N, Liu Z Y, Wang G D.  Acta Metall Sin, 2010; 46: 1230

    (张维娜, 刘振宇, 王国栋. 金属学报, 2010; 46: 1230)

[2] Masaaki I, Kozo K.  Int J Impact Eng, 2000; 24: 117

[3] Liu C Y, Li D Z, Wei Y H, Hou L F, Liu D F, Jin X Z.  J Iron Steel Res, 2010; 22(6): 48

    (刘春月, 李大赵, 卫英慧, 侯利锋, 刘东风, 金献哲. 钢铁研究学报, 2010; 22(6): 48)

[4] Liu W, Li Z B, Wang X, Zou H, Wang L X.  Acta Metall Sin, 2009; 45: 285

    (刘伟, 李志斌, 王翔, 邹骅, 王立新. 金属学报, 2009; 45: 285)

[5] Grassel O, Kruger L, Frommeyer G, Meyer L W.  Int J Plast, 2000; 16: 1391

[6] Curtze S, Kuokkala V T.  Acta Mater, 2010; 58: 5129

[7] Sahu P, Curtze S, Das A, Mahato B, Kuokkalab V T, Chowdhurya S G.  Scr Mater, 2010; 25: 6

[8] Hwang S W, Ji J H, Park K T.  Mater Sci Eng, 2011; A528: 7267

[9] Parka K T, Hwang S W, Ji J H, Lee C S.  Proc Eng, 2011; 10: 1002

[10] Hsu C H, Lee S C, Wang L, Dong X.  Mater Chem Phys, 2002; 73: 174

[11] Murr L E, Staudhammer K P, Hecker S S.  Metall Trans, 1982; 13: 627

[12] Yu Y N.  Fundamentals of Materials Science. Beijing: High Education Press, 2006: 559

     (余永宁. 材料科学基础. 北京: 高等教育出版社, 2006: 559)

[13] Xu Z, Zhao L C.  Metal Solid Phase Transformation Principle. Beijing: Science Press, 2004: 86

     (徐洲, 赵连城. 金属固态相变原理. 北京: 科学出版社, 2004: 86)

[14] Wu C C, Wang S H, Chen C Y, Yang J R, Chiu P K, Fang J.  Scr Mater, 2007; 56: 717

[15] Lee W S, Xiea G L, Lin C F.  Mater Sci Eng, 2001; A257: 256

[16] Hokka M, Kuokkala V T, Curtze S, Vuoristo T, Apostol M.  J Phys IV Fr, 2006; 134: 1301

[17] Huang B X, Wang X D, Rong Y H, Wang L, Jin L.  Mater Sci Eng, 2006; A438--440: 306

[18] De A K, Speer J G, Murdock D C, Mataya M C, Comstock R J.  Metall Mater Trans, 2006; 37A: 1875

[19] Schramm R E, Reed R P.  Metall Trans, 1975; 6: 1345

[20] Bolling G F, Richman R H.  Acta Metall, 1965; 13: 709

[21] Zhou X F, Fu R Y, Su Y, Li L.  J Mater Therm Treat, 2009; 30(5): 145.

     (周小芬, 符仁钰, 苏钰, 李麟. 材料热处理学报, 2009; 30(5): 145)

[22] Bohle J, Chmelic F.  J Alloys Compd, 2004; 378: 207

[23] Barnett M R, Keshavara Z, Beer A G, Atwell D.  Acta Mater, 2004; 52: 5093

[24] Xue Q, Liao X Z, Zhu Y T, Gray III G T.  Mater Sci Eng, 2005; A410--411: 252

[25] Allain S, Chateau J P, Bouaziz O, Migot S, Guelton N.  Mater Sci Eng, 2004; A387--389: 158
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[4] WANG Kai, JIN Xi, JIAO Zhiming, QIAO Junwei. Mechanical Behaviors and Deformation Constitutive Equations of CrFeNi Medium-Entropy Alloys Under Tensile Conditions from 77 K to 1073 K[J]. 金属学报, 2023, 59(2): 277-288.
[5] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[6] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[7] WANG Nan, CHEN Yongnan, ZHAO Qinyang, WU Gang, ZHANG Zhen, LUO Jinheng. Effect of Strain Rate on the Strain Partitioning Behavior of Ferrite/Bainite in X80 Pipeline Steel[J]. 金属学报, 2023, 59(10): 1299-1310.
[8] FANG Yuanzhi, DAI Guoqing, GUO Yanhua, SUN Zhonggang, LIU Hongbing, YUAN Qinfeng. Effect of Laser Oscillation on the Microstructure and Mechanical Properties of Laser Melting Deposition Titanium Alloys[J]. 金属学报, 2023, 59(1): 136-146.
[9] LI Zhao, JIANG He, WANG Tao, FU Shuhong, ZHANG Yong. Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment[J]. 金属学报, 2022, 58(9): 1179-1188.
[10] LIANG Chen, WANG Xiaojuan, WANG Haipeng. Formation Mechanism of B2 Phase and Micro-Mechanical Property of Rapidly Solidified Ti-Al-Nb Alloy[J]. 金属学报, 2022, 58(9): 1169-1178.
[11] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[12] LI Wei, JIA Xingqi, JIN Xuejun. Research Progress of Microstructure Control and Strengthening Mechanism of QPT Process Advanced Steel with High Strength and Toughness[J]. 金属学报, 2022, 58(4): 444-456.
[13] CHEN Wei, CHEN Hongcan, WANG Chenchong, XU Wei, LUO Qun, LI Qian, CHOU Kuochih. Effect of Dilatational Strain Energy of Fe-C-Ni System on Martensitic Transformation[J]. 金属学报, 2022, 58(2): 175-183.
[14] YUAN Jiahua, ZHANG Qiuhong, WANG Jinliang, WANG Lingyu, WANG Chenchong, XU Wei. Synergistic Effect of Magnetic Field and Grain Size on Martensite Nucleation and Variant Selection[J]. 金属学报, 2022, 58(12): 1570-1580.
[15] MA Minjing, QU Yinhu, WANG Zhe, WANG Jun, DU Dan. Dynamics Evolution and Mechanical Properties of the Erosion Process of Ag-CuO Contact Materials[J]. 金属学报, 2022, 58(10): 1305-1315.
No Suggested Reading articles found!