Please wait a minute...
Acta Metall Sin  2011, Vol. 47 Issue (4): 475-481    DOI: 10.3724/SP.J.1037.2010.00597
论文 Current Issue | Archive | Adv Search |
MAGNETIC STRUCTURE OF RAPIDLY QUENCHED FeCo-BASED RIBBON ANNEALED UNDER TENSILE STRESS IN FLOWING ATMOSPHERE
FANG Yunzhang1, 2), XU Qiming1), YE Huiqun2), FAN Xiaozhen2), QIU Jianfeng2)
1) School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055
2) College of Mathematics, Physics and Information Engineering, Zhejiang Normal University, Jinhua 321004
Cite this article: 

FANG Yunzhang XU Qiming YE Huiqun FAN Xiaozhen QIU Jianfeng. MAGNETIC STRUCTURE OF RAPIDLY QUENCHED FeCo-BASED RIBBON ANNEALED UNDER TENSILE STRESS IN FLOWING ATMOSPHERE. Acta Metall Sin, 2011, 47(4): 475-481.

Download:  PDF(847KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The FeCo-based ribbons (Fe36Co36Nb4Si4.8B19.2) with dirrerent magnetic structures were prepared by single roller quenched method and then annealed with direct current under tensile stress in flowing atmosphere. The longitudinally driven giant magneto-impedance (LDGMI) effect in the stress-Joule-heated FeCo-based ribbon was measured with HP4294A impedance analyzer. The dependences between the characteristic parameters of the LDGMI profiles, ratio of giant magneto-impedance and half-height width of the applied magnetic field at the bottom, and driving current frequency were analyzed. The difference of the LDGMI profiles of the annealed FeCo-based ribbons with various remained thicknesses obtained by etching with 16.7% HCl solution was compared. The mechanism and the character of the stress-induced magnetic structure in FeCo-based ribbons were exposured by means of the principle of the skin effect and the theory of the dependence of giant magneto-impedance on the magnetic anisotropy in the magnetic materials.
Key words:  FeCo-based alloy      magnetic anisotropy      amorphous      current annealing      stress      giant magneto-impedance     
Received:  08 November 2010     
ZTFLH: 

TM27

 
  O482.5

 
Fund: 

Supported by National Natural Science Foundation of China (Nos.50871104 and 11079029), Natural Science Foundation of Zhejiang Province (No.Y4080324) and Natural Science Foundation of Shaanxi Province (No.Sj08e101)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00597     OR     https://www.ams.org.cn/EN/Y2011/V47/I4/475

[1] Duwez P, Lin S C H. J Appl Phys, 1967; 38: 4096

[2] Masumoto T, Kimura H M, Inoue A, Waseda Y. Mater Sci Eng, 1976; 24: 141

[3] Kikuchi M, Fujimori H, Obi T, Masumoto T. Jpn J Appl Phys, 1975; 14: 1077

[4] Yoshizawa Y, Oguma S, Yamauchi K. J Appl Phys, 1988; 64: 6044

[5] Wu H Z, Liu Y H, Zhang L, Xiao S Q, Dai Y Y. Acta Metall Sin, 2000; 36: 997

(吴厚政, 刘宜华, 张 林, 萧淑琴, 代由勇. 金属学报, 2000; 36: 997)

[6] Jiang H G, Tong H Y, Ding B Z, Hu Z Q, Song Q H, Dong L, Zhou Q. Acta Metall Sin, 1993; 29: B515

(姜洪刚, 佟华宇, 丁炳哲, 胡壮麒, 宋启洪, 董林, 周强. 金属学报, 1993; 29: B515)

[7] Chen W P, Xiao S Q, Wang W J, Liu Y H. Acta Metall Sin, 2004; 40: 1295

(陈卫平, 萧淑琴, 王文静, 刘宜华. 金属学报, 2004; 40: 1295)

[8] Inoue A. Acta Mater, 2000; 48: 279

[9] Xu M, Sun Y, Quan M X, Wang Y D, Zuo L. Acta Metall Sin, 2007; 43: 699

(徐民, 孙 羽, 全明秀, 王沿东, 左良. 金属学报, 2007; 43: 699)

[10] Shen B L, Inoue A, Chang C T. Appl Phys Lett, 2004; 85: 4911

[11] Wang Z C, Gong F F, Yang X L, Zeng L, Chen G, Yang J X, Qian S M, Yang D P. J Appl Phys, 2000; 87: 4819

[12] Herzer G. J Magn Magn Mater, 1992; 112: 258

[13] Yoshizawa Y, Oguma S, Yamauchi K. J Appl Phys, 1988; 64: 6044

[14] Yoshizawa Y, Yamauchi K. IEEE Trans Magn, 1989; 25: 3324

[15] Kraus L, Zaveta K, Heczko O, Duhaj P, Vlasak G, Schnaider T. J Magn Magn Mater, 1992; 112: 275

[16] Herzer G. IEEE Trans Magn, 1994; 30: 4800

[17] Fang Y Z, Zheng J J, Wu F M, Xu Q M, Ye H Q, Zhang J Q, Zheng J L, Li T Y. Appl Phys Lett, 2010; 96: 092508–1 [18] Yang J X, Yang X L, Chen G. Chin Sci Bull, 1998; 43: 1051

(杨介信, 杨燮龙, 陈国. 科学通报, 1998; 43: 1051)

[19] Phan M H, Peng H X. Prog Mater Sci, 2008; 53: 323
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] LI Shilei, LI Yang, WANG Youkang, WANG Shengjie, HE Lunhua, SUN Guang'ai, XIAO Tiqiao, WANG Yandong. Multiscale Residual Stress Evaluation of Engineering Materials/Components Based on Neutron and Synchrotron Radiation Technology[J]. 金属学报, 2023, 59(8): 1001-1014.
[4] LI Qian, LIU Kai, ZHAO Tianliang. Rust Formation Behavior and Mechanism of Q235 Carbon Steel in 5%NaCl Salt Spray Under Elastic Tensile Stress[J]. 金属学报, 2023, 59(6): 829-840.
[5] LIANG Kai, YAO Zhihao, XIE Xishan, YAO Kaijun, DONG Jianxin. Correlation Between Microstructure and Properties of New Heat-Resistant Alloy SP2215[J]. 金属学报, 2023, 59(6): 797-811.
[6] HAN En-Hou, WANG Jianqiu. Effect of Surface State on Corrosion and Stress Corrosion for Nuclear Materials[J]. 金属学报, 2023, 59(4): 513-522.
[7] CHANG Litao. Corrosion and Stress Corrosion Crack Initiation in the Machined Surfaces of Austenitic Stainless Steels in Pressurized Water Reactor Primary Water: Research Progress and Perspective[J]. 金属学报, 2023, 59(2): 191-204.
[8] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[9] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[10] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[11] JIANG Jiang, HAO Shijie, JIANG Daqiang, GUO Fangmin, REN Yang, CUI Lishan. Quasi-Linear Superelasticity Deformation in an In Situ NiTi-Nb Composite[J]. 金属学报, 2023, 59(11): 1419-1427.
[12] QI Zhao, WANG Bin, ZHANG Peng, LIU Rui, ZHANG Zhenjun, ZHANG Zhefeng. Effects of Stress Ratio on the Fatigue Crack Growth Rate Under Steady State of Selective Laser Melted TC4 Alloy with Defects[J]. 金属学报, 2023, 59(10): 1411-1418.
[13] LU Haifei, LV Jiming, LUO Kaiyu, LU Jinzhong. Microstructure and Mechanical Properties of Ti6Al4V Alloy by Laser Integrated Additive Manufacturing with Alternately Thermal/Mechanical Effects[J]. 金属学报, 2023, 59(1): 125-135.
[14] MA Zhimin, DENG Yunlai, LIU Jia, LIU Shengdan, LIU Honglei. Effect of Quenching Rate on Stress Corrosion Cracking Susceptibility of 7136 Aluminum Alloy[J]. 金属学报, 2022, 58(9): 1118-1128.
[15] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
No Suggested Reading articles found!