Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (11): 1458-1472    DOI: 10.3724/SP.J.1037.2010.00446
论文 Current Issue | Archive | Adv Search |
RESEARCH PROGRESS ON PLASTIC DEFORMATION MECHANISM OF Mg ALLOYS
LIU Qing
National Engineering Research Centre for Mg Alloys, School of Materials Science and Engineering, Chongqing University, Chongqing 400030
Cite this article: 

LIU Qing. RESEARCH PROGRESS ON PLASTIC DEFORMATION MECHANISM OF Mg ALLOYS. Acta Metall Sin, 2010, 46(11): 1458-1472.

Download:  PDF(1882KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  Possible slip and twinning systems and their critical resolved shear stresses of Mg alloys with hcp structure were described. Research works on plastic deformation behavior and micro-mechanism of different kinds of Mg alloys were reviewed. Both microstructure and texture evolutions during different thermomechanical processes, both dynamic and static recrystallization mechanisms of Mg alloys were described and discussed. Deformation and strengthening mechanisms of precipitates hardening Mg alloys were also addressed with emphasis on the interaction between precipitates and twinning/slip.
Key words:  Mg alloy      plastic deformation      mechanical twinning      dislocation slip      texture      anisotropy      recrystallization     
Received:  06 September 2010     
Fund: 

Supported by National Basic Research Program of China (No.2007CB613700) and National Natural Science Foundation of China (Nos.50620130096 and  50231030)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2010.00446     OR     https://www.ams.org.cn/EN/Y2010/V46/I11/1458

[1] Agnew S R, Duygulu  O. Int J Plast, 2005; 21: 1161 [2] Obara T, Yoshinga H, Morozumi S. Acta Metall, 1973; 21: 845 [3] Stohr J F, Poirier J P. Philos Mag, 1972; 25: 1313 [4] Yoo M H, Agnew S R, Morris J R, Ho K M. Mater Sci Eng, 2001; A319–321: 87 [5] Styczynski A, Hartig C, Bohlen J, Letzig D. Scr Mater, 2004; 50: 943 [6] Agnew S R, Yoo M H, Tome C N. Acta Mater, 2001; 49: 4277 [7] Agnew S R, Tom C N, Brown D W, Holden T M, Vogel S C. Scr Mater, 2003; 48: 1003 [8] Christian J W, Mahajan S. Prog Mater Sci, 1995; 39: 1 [9] Yoo M. Metall Mater Trans, 1981; 12A: 409 [10] Nave M D, Barnett M R. Scr Mater, 2004; 51: 881 [11] Chen Y J, Wang Q D, Roven H J, Liu M P, Karlsen M, Yu Y D, Hjelen J. Scr Mater, 2008; 58: 311 [12] Jiang J, Godfrey A, Liu W, Liu Q. Scr Mater, 2008; 58: 122 [13] Jiang J, Godfrey A, Liu Q. Key Eng Mater, 2007; 353–358: 627 [14] Yang P, Yu Y, Chen L, Mao W. Scr Mater, 2004; 50: 1163 [15] Barnett M R, Keshavarz Z, Beer A G, Ma X. Acta Mater, 2008; 56: 5 [16] Kelly E W, Hosford W F. Trans Metall Soc AIME, 1968; 242: 5 [17] Reed–Hill R E, Robertson W D. Acta Metall, 1957; 5: 728 [18] Wonsiewicz B C, Backofen W A. Metall Soc AIME, 1967; 239: 1422 [19] Yi S B, Davies C H J, Brokmeier H G, Bolmaro R E, Kainer K U, Homeyer J. Acta Mater, 2006; 54: 549 [20] Kleiner S, Uggowitzer P J. Mater Sci Eng, 2004; A379: 258 [21] Jiang J, Godfrey A, Liu Q. Mater Sci Technol, 2005; 21: 1417 [22] Choi S H, Shin E J, Seong B S. Acta Mater, 2007; 55: 4181 [23] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A488: 406 [24] Yin D L, Wang J T, Liu J Q, Zhao X. J Alloys Compd, 2009; 478: 789 [25] Jiang J, Godfrey A, Liu W, Liu Q. Mater Sci Eng, 2008; A483–484: 576 [26] Yan H, Chen R S, Han E H. Mater Sci Eng, 2010; A527: 3317 [27] Jiang L, Jonas J J, Luo A A, Sachdev A K, Godet S. Scr Mater, 2006; 54: 771 [28] Jiang L, Jonas J J, Mishra R K, Luo A A, Sachdev A K, Godet S. Acta Mater, 2007; 55: 3899 [29] Barnett M R, Keshavarz Z, Beer A G, Atwell D. Acta Mater, 2004; 52: 5093 [30] Jain A, Agnew S R. Mater Sci Eng, 2007; A462: 29 [31] Al–Samman T, Li X, Chowdhury S G. Mater Sci Eng, 2010; A527: 3450 [32] Prasad Y V R K, Rao K P. Mater Sci Eng, 2008; A487: 316 [33] Tucker MT, HorstemeyerMF, Gullett PM, El Kadiri H, Whittington W R. Scr Mater, 2009; 60: 182 [34] Wu L, Jain A, Brown D W, Stoica G M, Agnew S R, Clausen B, Fielden D E, Law P K. Acta Mater, 2008; 56: 688 [35] Agnew S R, Duygulu  O. Int J Plast, 2005; 21: 1161 [36] Zeng R C, Han E H, KeW, Dietzel W, Kainer K U, Atrens A. Int J Fatigue, 2010; 32: 411 [37] Barnett M R. Mater Sci Eng, 2007; A464: 1 [38] Barnett M R, Jacob S, Gerard B F, Mullins J G. Scr Mater, 2008; 59: 1035 [39] Walde T, Riedel H. Mater Sci Eng, 2007; A443: 277 [40] Perez–Prado M T, del Valle J A, Contreras J M, Ruano O A. Scr Mater, 2004; 50: 661 [41] del Valle J A, Perez–Prado M T, Ruano O A. Mater Sci Eng, 2003; A355: 68 [42] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Haghshenas M. J Alloys Compd, 2009; 475: 126 [43] Chang L L, Shang E F, Wang Y N, Zhao X, Qi M. Mater Charact, 2009; 60: 487 [44] Koh H, Sakai T, Utsunomiya H, Minamiguchi S. Mater Trans, 2007; 48: 2023 [45] Li H, Hsu E, Szpunar J, Utsunomiya H, Sakai T. J Mater Sci, 2008; 43: 7148 [46] Utsunomiya H, Sakai T, Minamiguchi S, Koh H. High–Speed Heavy Rolling of Magnesium Alloy Sheets, Minerals. Warrendale: Metals & Materials Soc, 2006: 201 [47] Watanabe Y, Sakai T, Utsunomiya H. J Iron Steel Res Int, 2008; 15: 712 [48] Kim W J, Park J D, Wang J Y, Yoon W S. Scr Mater, 2007; 57: 755 [49] Kim W J, Lee J B, Kim W Y, Jeong H T, Jeong H G. Scr Mater, 2007; 56: 309 [50] Kim W J, Jeong H G, Jeong H T. Scr Mater, 2009; 61: 1040 [51] Huang X, Suzuki K, Watazu A, Shigematsu I, Saito N. Scr Mater, 2009; 60: 964 [52] Chino Y, Sassa K, Kamiya A, Mabuchi M. In: 5th Int Conf Processing and Manufacturing of Advanced Materials. Vancouver, Canada: Trans Tech Publications Ltd, 2007: 1615 [53] Chen X P, Shang D, Xiao R, Huang G J, Liu Q. Trans Nonferr Metal Soc, 2010; 20: 589 [54] Lim H K, Lee J Y, Kim D H, Kim W T, Lee J S, Kim D H. Mater Sci Eng, 2009; A506: 63 [55] Shahzad M, Wagner L. Mater Sci Eng, 2009; A506: 141 [56] Chang L L, Wang Y N, Zhao X, Huang J C. Mater Sci Eng, 2008; A496: 512 [57] Liang S J, Liu Z Y, Wang E D. Mater Lett, 2008; 62: 4009 [58] Mishra R K, Gupta A K, Rao P R, Sachdev A K, Kumar A M, Luo A A. Scr Mater, 2008; 59: 562 [59] Park S S, Tang W N, You B S. Mater Lett, 2010; 64: 31 [60] Stanford N, Barnett M R. Mater Sci Eng, 2008; A496: 399 [61] Park S S, You B S, Yoon D J. J Mater Process Technol, 2009; 209: 5940 [62] Uematsu Y, Tokaji K, Kamakura M, Uchida K, Shibata H, Bekku N. Mater Sci Eng, 2006; A434: 131 [63] Azeem M A, Tewari A, Mishra S, Gollapudi S, Ramamurty U. Acta Mater, 2010; 58: 1495 [64] Bohlen J, Yi S B, Swiostek J, Letzig D, Brokmeier H G, Kainer K U. Scr Mater, 2005; 53: 259 [65] Mabuchi M, Iwasaki H, Yanase K, Higashi K. Scr Mater, 1997; 36: 681 [66] Mabuchi M, Ameyama K, Iwasaki H, Higashi K. Acta Mater, 1999; 47: 2047 [67] Mukai T, Yamanoi M,Watanabe H, Higashi K. Scr Mater, 2001; 45: 89 [68] Kim W J, An C W, Kim Y S, Hong S I. Scr Mater, 2002; 47: 39 [69] KimW J, Hong S I, Kim Y S, Min S H, Jeong H T, Lee J D. Acta Mater, 2003; 51: 3293 [70] Perez–Prado M T, del Valle J A, Ruano O A. Scr Mater, 2004; 51: 1093 [71] Perez–Prado M T, del Valle J A, Ruano O A. Mater Lett, 2005; 59: 3299 [72] del Valle J A, P´erez–Prado M T, Ruano O A. Mater Sci Eng, 2005; A410–411: 353 [73] Tan J C, Tan M J. Mater Sci Eng, 2003; A339: 124 [74] Fatemi–Varzaneh S M, Zarei–Hanzaki A, Beladi H. Mater Sci Eng, 2007; A456: 52 [75] Sitdikov O, Kaibyshev R. Mater Trans, 2001; 42: 1928 [76] Jin Q L, Shim S Y, Lim S G. Scr Mater, 2006; 55: 843 [77] Al–Samman T, Gottstein G. Mater Sci Eng, 2008; A490: 411 [78] Xu S W, Kamado S, Honma T. Scr Mater, 2010; 63: 293 [79] del Valle J A, Ruano O A. Mater Sci Eng, 2008; A487: 473 [80] Galiyev A, Kaibyshev R, Gottstein G. Acta Mater, 2001; 49: 1199 [81] Zhang Y, Zeng X, Lu C, Ding W. Mater Sci Eng, 2006; A428: 91 [82] Barnett M R. J Light Met, 2001; 1: 167 [83] Yang X Y, Ji Z S, Miura H, Sakai T. Trans Nonferr Met Soc, 2009; 19: 55 [84] Xin R L, Wang B S, Chen X P, Huang G J, Liu Q. Sci China, 2009; 52E: 176 [85] Wang Q, Li D, Blandin J J, Su´ery M, Donnadieu P, Ding W. Mater Sci Eng, 2009; A516: 189 [86] Li X, Yang P, Wang L N, Meng L, Cui F. Mater Sci Eng, 2009; A517: 160 [87] Jager A, Luk´ac P, Gartnerov´a V, Haloda J, Dopita M. Mater Sci Eng, 2006; A432: 20 [88] Perez–Prado M T, Ruano O A. Scr Mater, 2002; 46: 149 [89] Perez–Prado M T, Ruano O A. Scr Mater, 2003; 48: 59 [90] Yang X Y, Zhu Y K, Miura H, Sakai T. Trans Nonferr Met Soc, 2010; 20: 1269 [91] Nie J F. Scr Mater, 2003; 48: 1009 [92] Hutchinson C, Nie J, Gorsse S. Metall Mater Trans, 2005; 36A: 2093 [93] Zhang M X, Kelly P M. Scr Mater, 2003; 48: 379 [94] Matsuda M, Ii S, Kawamura Y, Ikuhara Y, Nishida M. Mater Sci Eng, 2004; A386: 447 [95] Hantzsche K, Bohlen J, Wendt J, Kainer K U, Yi S B, Letzig D. Scr Mater, 2010; 63: 725 [96] Ball E A, Prangnell P B. Scr Metall Mater, 1994; 31: 111 [97] Mackenzie L W F, Davis B, Humphreys F J, Lorimer G W. Mater Sci Technol, 2007; 23: 1173 [98] Senn J W, Agnew S R. Magnesium Technology 2008. New Orleans: TMS, 2008: 153 [99] Senn J W, Agnew S R. Proc Magnesium Technology in the Global Age. Montreal: Canadian Institute of Mining, Metallurgy and Petroleum, 2006: 115 [100] Mackenzie L W F, Pekguleryuz M O. Scr Mater, 2008; 59: 665 [101] Cottam R, Robson J, Lorimer G, Davis B. Mater Sci Eng, 2008; A485: 375
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[3] CHANG Songtao, ZHANG Fang, SHA Yuhui, ZUO Liang. Recrystallization Texture Competition Mediated by Segregation Element in Body-Centered Cubic Metals[J]. 金属学报, 2023, 59(8): 1065-1074.
[4] ZHANG Haifeng, YAN Haile, FANG Feng, JIA Nan. Molecular Dynamic Simulations of Deformation Mechanisms for FeMnCoCrNi High-Entropy Alloy Bicrystal Micropillars[J]. 金属学报, 2023, 59(8): 1051-1064.
[5] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[6] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[7] WAN Tao, CHENG Zhao, LU Lei. Effect of Component Proportion on Mechanical Behaviors of Laminated Nanotwinned Cu[J]. 金属学报, 2023, 59(4): 567-576.
[8] SHEN Zhao, WANG Zhipeng, HU Bo, LI Dejiang, ZENG Xiaoqin, DING Wenjiang. Research Progress on the Mechanisms Controlling High-Temperature Oxidation Resistance of Mg Alloys[J]. 金属学报, 2023, 59(3): 371-386.
[9] ZHANG Zixuan, YU Jinjiang, LIU Jinlai. Anisotropy of Stress Rupture Property of Ni Base Single Crystal Superalloy DD432[J]. 金属学报, 2023, 59(12): 1559-1567.
[10] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[11] GONG Xiangpeng, WU Cuilan, LUO Shifang, SHEN Ruohan, YAN Jun. Effect of Natural Aging on Artificial Aging of an Al-2.95Cu-1.55Li-0.57Mg-0.18Zr Alloy at 160oC[J]. 金属学报, 2023, 59(11): 1428-1438.
[12] PENG Liming, DENG Qingchen, WU Yujuan, FU Penghuai, LIU Ziyi, WU Qianye, CHEN Kai, DING Wenjiang. Additive Manufacturing of Magnesium Alloys by Selective Laser Melting Technology: A Review[J]. 金属学报, 2023, 59(1): 31-54.
[13] GE Jinguo, LU Zhao, HE Siliang, SUN Yan, YIN Shuo. Anisotropy in Microstructures and Mechanical Properties of 2Cr13 Alloy Produced by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(1): 157-168.
[14] HAN Dong, ZHANG Yanjie, LI Xiaowu. Effect of Short-Range Ordering on the Tension-Tension Fatigue Deformation Behavior and Damage Mechanisms of Cu-Mn Alloys with High Stacking Fault Energies[J]. 金属学报, 2022, 58(9): 1208-1220.
[15] FENG Di, ZHU Tian, ZANG Qianhao, LEE Yunsoo, FAN Xi, ZHANG Hao. Solution Behavior of Spray-Formed Hypereutectic AlSiCuMg Alloy[J]. 金属学报, 2022, 58(9): 1129-1140.
No Suggested Reading articles found!