Please wait a minute...
Acta Metall Sin  2010, Vol. 46 Issue (6): 687-694    DOI: 10.3724/SP.J.1037.2009.00855
论文 Current Issue | Archive | Adv Search |
MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA–HIGH STRENGTH LOW ALLOY STEEL
WANG Lijun; CAI Qingwu; YU Wei; WU Huibin; LEI Aidi
National Engineering Research Center for Advanced Rolling Technology; University of Science and Technology Beijing;
Beijing 100083
Cite this article: 

WANG Lijun CAI Qingwu YU Wei WU Huibin LEI Aidi. MICROSTRUCTURE AND MECHANICAL PROPERTIES OF 1500 MPa GRADE ULTRA–HIGH STRENGTH LOW ALLOY STEEL. Acta Metall Sin, 2010, 46(6): 687-694.

Download:  PDF(3201KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A novel sort of 1500 MPa grade ultra–high strength low alloy structural steel with multi–element of Si–Mn–Cr–Ni–Mo was designed. Effects of four different processes of TMCP (thermo–mechanical controlled processing), controlled rolling+air–cooled, controlled rolling + direct quenching and controlled rolling+direct quenching+tempering at 250℃ on the microstructure and mechanical properties were investigated. The results indicate that the directly quenched steel has a maximum tensile strength of 1890 MPa, yield strength of 1280 MPa and elongation of 13%. After tempered at 250 ℃ for 30 min, the tensile strength of the steel decreased to 1820 MPa, while the yield strength increased to 1350 MPa, which is ascribed to the comprehensive effect of the softening mechanism due to the recoverof dislocation sub–structure and the strengthening mechanism due to the decomposition of retained austenite and "–carbide precipitation. Duplex phase microstructure involving lath bainite, martensite segmented by bainite, and retained austenite was obtained by the process of air–cooling and TMCP, so that it has excellent strength and plasticity. Carbon diffusion phenomenon exists in the quenching process of low–carbon steel. Both the decomposition of retained austenite and the carbon partitioning into austenite from martensite or bainite were found during tempering process. The paper demonstrates that the precipitation particles of cubic structure nucleated in austenite, growing up  and coarsning uring the whole cooling process. Futhermore, the emergence of a lage number of second–phasprecipitation cores was not found in martensite or bainite after phase tansformation.

Key words:  ultra-high strength low alloy steel      direct quenching      martensite      bainite      retained austenite     
Received:  23 December 2009     
Fund: 

Supported by Project of Scientific and Technical Supporting Program of China during the 11th Five–Year Plan (No.2006BAE03A06)

URL: 

https://www.ams.org.cn/EN/10.3724/SP.J.1037.2009.00855     OR     https://www.ams.org.cn/EN/Y2010/V46/I6/687

[1] Fan C G, Dong H, Yong Q L, Weng Y Q, Wang M Q, Shi J, Hui W J. Mater Mech Eng, 2006; 30: 1
(范长刚, 董瀚, 雍岐龙, 翁宇庆, 王毛球, 时捷, 惠卫军. 机械工程材料, 2006; 30: 1)
[2] Guo J W, Sun J B, Li H B, Rong S F. J Jiamusi Univ, 2002; 20: 23
(郭继伟, 孙建波, 李洪波, 荣守范. 佳木斯大学学报, 2002; 20: 23)
[3] Garrison Jr W M, Maloney J L. Mater Sci Eng, 2005; A403: 299
[4] Maloney J L, Garrison Jr W M. Acta Mater, 2005; 53: 533
[5] Ji G L, Li F G, Li Q H, Li H Q, Li Z. Mater Sci Eng, 2010; A527: 1165
[6] Li J, Guo F, Li Z, Wang J L, Yan M G. J Iron Steel Res Int, 2007; 14: 254
[7] hang L C, Bhadesha H K D H. Mater Sci Eng, 1994; A184: 17
[8] Sule Y S, Kahraman S, Erdinc K. Mater Charact, 2008; 59: 351
[9] Zhirafar S, Rezaeian A, Pugha M. J Mater Process Technol, 2007; 186: 298
[10] Fang H S, Liu D Y, Chang K D, Zhang C, Gu J L, Zhang W Z, Bai B Z, Yang Z G. J Iron Steel Res, 2001; 13(3): 31
(方鸿生, 刘东雨, 常开地, 张驰, 顾家琳, 张文征, 白秉哲, 杨志刚. 钢铁研究学报, 2001; 13(3): 31)
[11] Liu D Y, Fang H S, Bai B Z. Trans Mater Heat Treat, 2002; 23(4): 5
(刘东雨, 方鸿生, 白秉哲. 材料热处理学报, 2002, 23(4): 57)
[12] Fan C G, Dong H, Shi J, Liu Y L, Yong Q L, Hui W J, Wang M Q, Weng Y Q. Ordnance Mater Sci Eng, 2006;29(2): 31
(范长刚, 董瀚, 时捷, 刘燕林, 雍歧龙, 惠卫军, 王毛球, 翁宇庆. 兵器材料科学与工程; 2006; 29(2): 31)
[13] Wang L D, Ding F C, Wang B M, Zhu M, Zhong Y L, Liang J K. Acta Metall Sin, 2009; 45: 292
(王六定, 丁富才, 王佰民, 朱明, 钟英良, 梁锦奎. 金属学报, 2009; 45: 292)
[14] Gao K, Wang L D, Zhu M, Chen J D, Shi Y J, Kang M K. Acta Metall Sin, 2007; 43: 315
(高宽, 王六定, 朱民, 陈景东, 施易军, 康沫狂. 金属学报, 2007; 43: 315)
[15] Jing C N, Wang Z C, Han F T. Met Heat Treat, 2005; 30: 26
(景财年, 王作成, 韩福涛. 金属热处理, 2005; 30: 26)
[16] Gregg J M, Bhadeshia H K D H. Acta Mater, 1997; 45: 739
[17] Xu Z Y. Shanghai Met, 1995; 171
(徐祖耀. 上海金属, 1995; 17: 1)
[18] Zhou Y, Wu G H.Analysis Methods in Materials Science. 2nd Ed., Harbin: Harbin Institute of Technology Press, 2007: 95
(周玉, 武高辉. 材料分析测试技术. 第二版, 哈尔滨: 哈尔滨工业大学出版社, 2007: 95)
[19] Xu Z Y. Martensitic Transformation and Martensite. 2nd Ed., Beijing: Science Press, 1999: 84
(徐祖耀. 马氏体相变与马氏体. 第二版, 北京: 科学出版社, 1999: 84)
[20] Yong Q L. Secondary Phases in Steels. Beijing: Metallurgy Industry Press, 2006: 225, 247
(雍岐龙. 钢铁材料中的第二相. 北京: 冶金工业出版社, 2006: 225, 247)

[1] WANG Zhoutou, YUAN Qing, ZHANG Qingxiao, LIU Sheng, XU Guang. Microstructure and Mechanical Properties of a Cold Rolled Gradient Medium-Carbon Martensitic Steel[J]. 金属学报, 2023, 59(6): 821-828.
[2] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[3] CHEN Xueshuang, HUANG Xingmin, LIU Junjie, LV Chao, ZHANG Juan. Microstructure Regulation and Strengthening Mechanisms of a Hot-Rolled & Intercritical Annealed Medium-Mn Steel Containing Mn-Segregation Band[J]. 金属学报, 2023, 59(11): 1448-1456.
[4] HOU Xuru, ZHAO Lin, REN Shubin, PENG Yun, MA Chengyong, TIAN Zhiling. Effect of Heat Input on Microstructure and Mechanical Properties of Marine High Strength Steel Fabricated by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(10): 1311-1323.
[5] LI Xiaolin, LIU Linxi, LI Yating, YANG Jiawei, DENG Xiangtao, WANG Haifeng. Mechanical Properties and Creep Behavior of MX-Type Precipitates Strengthened Heat Resistant Martensite Steel[J]. 金属学报, 2022, 58(9): 1199-1207.
[6] ZHU Bin, YANG Lan, LIU Yong, ZHANG Yisheng. Micromechanical Properties of Duplex Microstructure of Martensite/Bainite in Hot Stamping via the Reverse Algorithms in Instrumented Sharp Indentation[J]. 金属学报, 2022, 58(2): 155-164.
[7] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[8] ZHU Dongming, HE Jiangli, SHI Genhao, WANG Qingfeng. Effect of Welding Heat Input on Microstructure and Impact Toughness of the Simulated CGHAZ in Q500qE Steel[J]. 金属学报, 2022, 58(12): 1581-1588.
[9] JIANG Zhonghua, DU Junyi, WANG Pei, ZHENG Jianneng, LI Dianzhong, LI Yiyi. Mechanism of Improving the Impact Toughness of SA508-3 Steel Used for Nuclear Power by Pre-Transformation of M-A Islands[J]. 金属学报, 2021, 57(7): 891-902.
[10] LIU Man, HU Haijiang, TIAN Junyu, XU Guang. Effect of Ausforming on the Microstructures and Mechanical Properties of an Ultra-High Strength Bainitic Steel[J]. 金属学报, 2021, 57(6): 749-756.
[11] SHI Zengmin, LIANG Jingyu, LI Jian, WANG Maoqiu, FANG Zifan. In Situ Analysis of Plastic Deformation of Lath Martensite During Tensile Process[J]. 金属学报, 2021, 57(5): 595-604.
[12] WANG Yu, HU Bin, LIU Xingyi, ZHANG Hao, ZHANG Haoyun, GUAN Zhiqiang, LUO Haiwen. Influence of Annealing Temperature on Both Mechanical and Damping Properties of Nb-Alloyed High Mn Steel[J]. 金属学报, 2021, 57(12): 1588-1594.
[13] LUO Haiwen,SHEN Guohui. Progress and Perspective of Ultra-High Strength Steels Having High Toughness[J]. 金属学报, 2020, 56(4): 494-512.
[14] WANG Shihong,LI Jian,GE Xin,CHAI Feng,LUO Xiaobing,YANG Caifu,SU Hang. Microstructural Evolution and Work Hardening Behavior of Fe-19Mn Alloy Containing Duplex Austenite and ε-Martensite[J]. 金属学报, 2020, 56(3): 311-320.
[15] ZHU Jian, ZHANG Zhihao, XIE Jianxin. Plastic Deformation Behavior and Fracture Mechanism of Rare Earth H13 Steel Based on In Situ TEM Tensile Study[J]. 金属学报, 2020, 56(12): 1592-1604.
No Suggested Reading articles found!