Please wait a minute...
Acta Metall Sin  2020, Vol. 56 Issue (2): 129-136    DOI: 10.11900/0412.1961.2019.00209
Current Issue | Archive | Adv Search |
Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel
WU Xiang,ZUO Xiurong(),ZHAO Weiwei,WANG Zhongyang
Key Laboratory of Material Physics, Ministry of Education, Zhengzhou University, Zhengzhou 450052, China
Cite this article: 

WU Xiang,ZUO Xiurong,ZHAO Weiwei,WANG Zhongyang. Mechanism of TiN Fracture During the Tensile Process of NM500 Wear-Resistant Steel. Acta Metall Sin, 2020, 56(2): 129-136.

Download:  HTML  PDF(16758KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Low-alloy high-strength martensitic wear-resistant steel has been widely used in the field of construction machinery due to its low cost and excellent mechanical properties. Microalloying elements, especially Ti, B and other elements, have been widely used to improve the performance of low carbon steel. However, addition of Ti will cause micron-sized Ti precipitates in the continuous casting process, causing cleavage fracture. Therefore, it is necessary to study the micron-sized TiN to reduce its influence on the toughness of the material. SEM, EDS, TEM and EBSD methods were combined with thermodynamic theory to study the precipitation rule of micron-sized TiN in NM500 wear-resistant steel, the fracture mechanism and the influence of matrix on the fracture mechanism. The results show that the tensile fracture mechanism of NM500 steel is mixed mode. There are two fracture morphology of micron-sized TiN on fracture surface: TiN is on the fracture surface, being on the tear ridge; TiN is at the bottom of a deep dimple. The Ti element in the steel precipitates at high temperature and forms a large number of micron-sized TiN. There are three kinds of fracture mechanisms in TiN when subjected to tensile stress: A single crack appears in TiN initiates and spreads to the matrix; A single crack appears in TiN initiates but stops at the matrix; A plurality of cracks are generated in the TiN, and the crack stops at the base, with the TiN shape being preserved intact. There are high strain zones and micron-sized TiN in NM500 steel, and the prior austenite grains are coarse. When the TiN cracks, the matrix has a poor ability to arrest the cracks, then the crack can extend on the substrate easily. When a plurality of TiN clusters are formed, the cracks are connected into one piece to be a weak band, leading to a poor plasticity to the steel.

Key words:  NM500 wear-resistant steel      TiN      broken mechanism      EBSD     
Received:  27 June 2019     
ZTFLH:  TG142.1  
Fund: Henan Provincial Science and Technology Cooperation Project, China(182106000016)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00209     OR     https://www.ams.org.cn/EN/Y2020/V56/I2/129

Fig.1  SEM images of mixed mode fracture (a), multi-precipitates fracture (b), TiN at the fracture surface (c) and TiN at the bottom of the deep pit (d) in the tensile fracture of NM500 steel specimen
Fig.2  EDS analysis of precipitate in tensile fracture of NM500 steel specimen
Fig.3  SEM images of fracture profile (a), TiN on grain boundaries (b) and TiN among grain (c) after corrosion of NM500 steel specimen (PAGBs—prior austenitic grain boundaries)
Fig.4  SEM images of TiN precipitates on the uncorroded fracture profile of NM500 steel specimen(a) TiN of the cluster near the tensile fracture (b) TiN with a large crack (c) TiN with a big hole(d) TiN with several cracks (e) cluster-like TiN of different sizes (f) TiN with several small cracks(g) TiN with a small hole (h) TiN with two small cracks (i) TiN with a intact shape
Fig.5  TEM image of nano TiN in NM500 steel
Fig.6  Mass fraction of phases as a function of temperature in NM500 steel at thermodynamic equilibrium state (a) and the relationship between temperature and Ti content in austenite (b)
Fig.7  Schematics of changes in micron-sized TiN during tensile process of NM500 steel(a) TiN with a long and wide crack(b) TiN with a big hole(c) TiN with several cracks
Fig.8  Local misorientation distribution maps of a quarter of thickness (a) and center of thickness (b), and quantitative analysis of local misorientation in a quarter of thickness and center of thickness (c) (The blue color indicates misorientations less than 1°, green between 1° and 2°, yellow between 2° and 3°, orange between 3° and 4°, and red between 4° and 5°; the high-angle grain boundaries (>15°) were delineated in black solid lines)
Fig.9  The image quality (IQ) maps of microstructure types of a quarter of thickness (a) and center of thickness (b), and quantitative analysis of distribution of misorientation angle of grains in a quarter of thickness and center of thickness (c) (θ means the angle of boundary, black line 15°≤θ≤50°, red line θ>50°)
[1] Ryabov V V, Kniaziuk T V, Mikhailov M S, et al. Structure and properties of new wear-resistant steels for agricultural machine building [J]. Inorg. Mater. Appl. Res., 2017, 8: 827
[2] Ojala N, Valtonen K, Heino V, et al. Effects of composition and microstructure on the abrasive wear performance of quenched wear resistant steels [J]. Wear, 2014, 317: 225
[3] Jiang Z Q, Fu H G, Yin E S, et al. Investigation and application of high strength low alloy wear resistant cast steel [J]. Mater. Technol., 2011, 26: 58
[4] Rendón J, Olsson M. Abrasive wear resistance of some commercial abrasion resistant steels evaluated by laboratory test methods [J]. Wear, 2009, 267: 2055
[5] Jha A K, Prasad B K, Modi O P, et al. Correlating microstructural features and mechanical properties with abrasion resistance of a high strength low alloy steel [J]. Wear, 2003, 254: 120
[6] Nikitin V N, Nastich S Y, Smirnov L A, et al. Economically alloyed high-strength steel for use in mine equipment [J]. Steel Trans., 2016, 46: 742
[7] Shi C B, Liu W J, Li J, et al. Effect of boron on the hot ductility of low-carbon Nb-Ti-microalloyed steel [J]. Mater. Trans., 2016, 57: 647
[8] Mu W Z, J?nsson P G, Shibata H, et al. Inclusion and microstructure characteristics in steels with TiN additions [J]. Steel Res. Int., 2016, 87: 339
[9] Jin Y L, Du S L. Precipitation behaviour and control of TiN inclusions in rail steels [J]. Ironmak. Steelmak., 2018, 45: 224
[10] Fu J W, Qiu W X, Nie Q Q, et al. Precipitation of TiN during solidification of AISI 439 stainless steel [J]. J. Alloys Compd., 2017, 699: 938
[11] Yan W, Shan Y Y, Yang K. Effect of TiN inclusions on the impact toughness of low-carbon microalloyed steels [J]. Metall. Mater. Trans., 2006, 37A: 2147
[12] Chen K, Du D H, Lu H, et al. Effect of TiN inclusion on fatigue crack growth behavior of alloy 690 tube [J]. Rare Met. Mater. Eng., 2018, 47: 1180
[12] (陈 凯, 杜东海, 陆 辉等. TiN夹杂物对690合金传热管疲劳裂纹扩展行为的影响 [J]. 稀有金属材料与工程, 2018, 47: 1180)
[13] Hulka K, Kern A, Schriever U. Application of niobium in quenched and tempered high-strength steels [J]. Mater. Sci. Forum, 2005, 500-501: 519
[14] Singh U P, Popli A M, Jain D K, et al. Influence of microalloying on mechanical and metallurgical properties of wear resistant coach and wagon wheel steel [J]. J. Mater. Eng. Perform., 2003, 12: 573
[15] Xie Z J, Shang C J, Wang X L, et al. Microstructure-property relationship in a low carbon Nb-B bearing ultra-high strength steel by direct-quenching and tempering [J]. Mater. Sci. Eng., 2018, A727: 200
[16] Pandey C, Saini N, Mahapatra M M, et al. Study of the fracture surface morphology of impact and tensile tested cast and forged (C&F) Grade 91 steel at room temperature for different heat treatment regimes [J]. Eng. Failure Anal., 2017, 71: 131
[17] Nohava J, Hau?ild P, Karlík M, et al. Electron backscattering diffraction analysis of secondary cleavage cracks in a reactor pressure vessel steel [J]. Mater. Charact., 2002, 49: 211
[18] Kang Y, Mao W M, Chen Y J, et al. Effect of Ti content on grain size and mechanical properties of UNS S44100 ferritic stainless steel [J]. Mater. Sci. Eng., 2016, A677: 211
[19] Prikryl M, Kroupa A, Weatherly G C, et al. Precipitation behavior in a medium carbon, Ti-V-N microalloyed steel [J]. Metall. Mater. Trans., 1996, 27A: 1149
[20] Fairchild D P, Howden D G, Clark W A T. The mechanism of brittle fracture in a microalloyed steel: Part I. Inclusion-induced cleavage [J]. Metall. Mater. Trans., 2000, 31A: 641
[21] Inoue K, Ohnuma I, Ohtani H, et al. Solubility product of TiN in austenite [J]. ISIJ Int., 1998, 38: 991
[22] Guo W Y, Hu X Q, Ma X P, et al. Effect of TiN precipitates on solidification microstructure of medium carbon Cr-Mo wear resistant steel [J]. Acta Metall. Sin., 2016, 52: 769
[22] (郭文营, 胡小强, 马晓平等. TiN析出相对中碳Cr-Mo耐磨钢凝固组织的影响 [J]. 金属学报, 2016, 52: 769)
[23] Lan L Y, Qiu C L, Zhao D W, et al. Microstructural characters and toughness of different sub-regions in the welding heat affected zone of low carbon bainitic steel [J]. Acta Metall. Sin., 2011, 47: 1046
[23] (兰亮云, 邱春林, 赵德文等. 低碳贝氏体钢焊接热影响区中不同亚区的组织特征与韧性 [J]. 金属学报, 2011, 47: 1046)
[24] Wang C F, Wang M Q, Shi J, et al. Effect of microstructural refinement on the toughness of low carbon martensitic steel [J]. Scr. Mater., 2008, 58: 492
[25] Yan P, Liu Z D, Bao H S, et al. Effect of tempering temperature on the toughness of 9Cr-3W-3Co martensitic heat resistant steel [J]. Mater. Des., 2014, 54: 874
[26] Zhou T, Yu H, Wang S Y. Effect of microstructural types on toughness and microstructural optimization of ultra-heavy steel plate: EBSD analysis and microscopic fracture mechanism [J]. Mater. Sci. Eng., 2016, A658: 150
[1] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[2] DU Jinhui, BI Zhongnan, QU Jinglong. Recent Development of Triple Melt GH4169 Alloy[J]. 金属学报, 2023, 59(9): 1159-1172.
[3] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[4] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[5] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[6] ZHANG Qiliang, WANG Yuchao, LI Guangda, LI Xianjun, HUANG Yi, XU Yunze. Erosion-Corrosion Performance of EH36 Steel Under Sand Impacts of Different Particle Sizes[J]. 金属学报, 2023, 59(7): 893-904.
[7] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[8] HUANG Ding, QIAO Yanxin, YANG Lanlan, WANG Jinlong, CHEN Minghui, ZHU Shenglong, WANG Fuhui. Effect of Shot Peening of Substrate Surface on Cyclic Oxidation Behavior of Sputtered Nanocrystalline Coating[J]. 金属学报, 2023, 59(5): 668-678.
[9] FENG Li, WANG Guiping, MA Kai, YANG Weijie, AN Guosheng, LI Wensheng. Microstructure and Properties of AlCo x CrFeNiCu High-Entropy Alloy Coating Synthesized by Cold Spraying Assisted Induction Remelting[J]. 金属学报, 2023, 59(5): 703-712.
[10] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[11] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[12] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[13] WANG Jingyang, SUN Luchao, LUO Yixiu, TIAN Zhilin, REN Xiaomin, ZHANG Jie. Rare Earth Silicate Environmental Barrier Coating Material: High-Entropy Design and Resistance to CMAS Corrosion[J]. 金属学报, 2023, 59(4): 523-536.
[14] WANG Di, HE Lili, WANG Dong, WANG Li, ZHANG Siqian, DONG Jiasheng, CHEN Lijia, ZHANG Jian. Influence of Pt-Al Coating on Tensile Properties of DD413 Alloy at High Temperatures[J]. 金属学报, 2023, 59(3): 424-434.
[15] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
No Suggested Reading articles found!