Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (9): 1175-1184    DOI: 10.11900/0412.1961.2019.00126
Overview Current Issue | Archive | Adv Search |
Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification
XU Qingyan(),YANG Cong,YAN Xuewei,LIU Baicheng
Cite this article: 

XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification. Acta Metall Sin, 2019, 55(9): 1175-1184.

Download:  HTML  PDF(16856KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ni-based superalloy turbine blades have been widely used in aerospace and industrial engine. Numerical simulation techniques can optimize the superalloy directional solidification process and enhance the rate of finished products. This paper summarized the existing macroscopic and microscopic numerical models in the superalloy blade directional solidification process. Simulations have been done on the temperature field evolution, grain structure and dendrite morphology in typical HRS and LMC directional solidification conditions, and the resulting microstructure features were investigated. In particular, the application of varying withdrawal rate in directional solidification of the superalloy blade was introduced. And the advantages of the varying withdrawal rate technique were emphasized by comparing it with the constant withdrawal rate method. The simulation results indicate that by applying varying withdrawal rate, the convex or concave shape of the mushy zone can be change to flat shape, so that parallel columnar grains can be obtained with enhanced high-temperature performance of the turbine blade.

Key words:  superalloy      numerical simulation      directional solidification      turbine blade     
Received:  23 April 2019     
ZTFLH:  TG132  
Fund: Supported by National Science and Technology Major Project(2017ZX04014001,2017-VII-0008-0101);National Key Research and Development Program of China(2017YFB0701503);National Natural Science Foundation of China(51374137)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00126     OR     https://www.ams.org.cn/EN/Y2019/V55/I9/1175

Fig.1  Schematics of high rate solidification (HRS) (a) and liquid metal cooling (LMC) (b) directional solidification techniques
Fig.2  Temperature field simulation results of the single crystal plate samples under HRS (a) and LMC (b) directional solidification conditions
Fig.3  Temperature field simulation results and mushy zone morphologies of the turbine blade under constant (a1, a2) and varying (b1, b2) withdrawal rate directional solidification conditions [31]
Fig.4  Numerical simulation of natural convection and prediction of freckle in single crystal superalloy(a) fluid flow and freckle simulation in a 2D plate(b) comparison of simulated freckles with experimental results of a 3D ladder part
Fig.5  Simulation and experimental results of the grain structure in single crystal bar samples under HRS (a) and LMC (b) directional solidification conditions
Fig.6  Simulated temperature field and grain structure of a turbine blade under varying withdraw rate in directional solidification condition(a) varying withdrawal rate process (b) temperature distribution (c) grain structure
Fig.7  Phase-field simulation results of dendrite competitive growth in directional solidification condition(a) solidification time 14 s(b) solidification time 28 s(c) solidification time 280 s
Fig.8  Phase-field simulation results of 3D dendrite growth under HRS (a1~a3) and LMC (b1~b3) directional solidification conditions[31](a1) solidification time 10 s (a2) solidification time 15 s (a3) solidification time 100 s(b1) solidification time 5 s (b2) solidification time 7.5 s (b3) solidification time 100 s
[1] VersnyderF I, ShankM E. The development of columnar grain and single crystal high temperature materials through directional solidification [J]. Mater. Sci. Eng., 1970, 6: 213
[2] GiameiA F, TschinkelJ G. Liquid metal cooling: A new solidification technique [J]. Metall. Trans., 1976, 7A: 1427
[3] YangX L,DongH B, WangW, , et al. Microscale simulation of stray grain formation in investment cast turbine blades [J]. Mater. Sci. Eng., 2004, A386: 129
[4] MaD X. Freckle formation during directional solidification of complex castings of superalloys [J]. Acta Metall. Sin., 2016, 52: 426
[4] 马德新. 定向凝固的复杂形状高温合金铸件中的雀斑形成 [J]. 金属学报, 2016, 52: 426
[5] AvesonJ W, TennantP A, FossB J, , et al. On the origin of sliver defects in single crystal investment castings [J]. Acta Mater., 2013, 61: 5162
[6] ElliottA J, PollockT M. Thermal analysis of the bridgman and liquid-metal-cooled directional solidification investment casting processes [J]. Metall. Mater. Trans., 2007, 38A: 871
[7] BeckermannC, GuJ P, BoettingerW J. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings [J]. Metall. Mater. Trans., 2000, 31A: 2545
[8] RamirezJ C, BeckermannC. Evaluation of a Rayleigh-number-based freckle criterion for Pb-Sn alloys and Ni-base superalloys [J]. Metall. Mater. Trans., 2003, 34A: 1525
[9] GandinC A, DesbiollesJ L, RappazM, , et al. A three-dimensional cellular automation-finite element model for the prediction of solidification grain structures [J]. Metall. Mater. Trans., 1999, 30A: 3153
[10] RappazM, GandinC A. Probabilistic modelling of microstructure formation in solidification processes [J]. Acta Metall. Mater., 1993, 41: 345
[11] XuQ Y, ZhangH, QiX, , et al. Multiscale modeling and simulation of directional solidification process of turbine blade casting with MCA method [J]. Metall. Mater. Trans., 2014, 45B: 555
[12] LiuS Z, LiJ R, TangD Z, , et al. Numerical simulation of directional solidification process of single crystal superalloys [J]. J. Mater. Eng., 1999, (7): 40
[12] 刘世忠, 李嘉荣, 唐定忠等. 单晶高温合金定向凝固过程数值模拟 [J]. 材料工程, 1999, (7): 40)
[13] PanD, XuQ Y, LiuB C. Modeling on directional solidification of superalloy blades with furnace wall temperature evolution [J]. Acta Metall. Sin., 2010, 46: 294
[13] 潘 冬, 许庆彦, 柳百成. 考虑炉壁温度变化的高温合金叶片定向凝固过程模拟 [J]. 金属学报, 2010, 46: 294
[14] ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy: I. Starter block [J]. Acta Metall. Sin., 2013, 49: 1508
[14] 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: I.引晶段 [J]. 金属学报, 2013, 49: 1508
[15] ZhangH, XuQ Y, SunC B, , et al. Simulation and experimental studies on grain selection behavior of single crystal superalloy: II. Spiral part [J]. Acta Metall. Sin., 2013, 49: 1521
[15] 张 航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究: II.螺旋段 [J]. 金属学报, 2013, 49: 1521
[16] WangW, LeeP D, McLeanM. A model of solidification microstructures in nickel-based superalloys: Predicting primary dendrite spacing selection [J]. Acta Mater., 2003, 51: 2971
[17] LiJ J, WangZ J, WangY Q, , et al. Phase-field study of competitive dendritic growth of converging grains during directional solidification [J]. Acta Mater., 2012, 60: 1478
[18] WangJ C, GuoC W, LiJ J, , et al. Recent progresses in competitive grain growth during directional solidification [J]. Acta Metall. Sin., 2018, 54: 657
[18] 王锦程, 郭春文, 李俊杰等. 定向凝固晶粒竞争生长的研究进展 [J]. 金属学报, 2018, 54: 657
[19] WarnkenN, MaD X, DrevermannA, , et al. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys [J]. Acta Mater., 2009, 57: 5862
[20] FangH, XueH, TangQ Y, , et al. Dendrite coarsening and secondary arm migration in the mushy zone during directional solidification [J]. Acta Metall. Sin., 2019, 55: 664
[20] 方 辉, 薛 桦, 汤倩玉等. 定向凝固糊状区枝晶粗化和二次臂迁移的实验和模拟 [J]. 金属学报, 2019, 55: 664
[21] KermanpurA, RappazM, VarahramN, , et al. Thermal and grain-structure simulation in a land-based turbine blade directionally solidified with the liquid metal cooling process [J]. Metall. Mater. Trans., 2000, 31B: 1293
[22] CuiK, XuQ Y, YuJ, , et al. Radiative heat transfer calculation for superalloy turbine blade in directional solidification process [J]. Acta Metall. Sin., 2007, 43: 465
[22] 崔 锴,许庆彦,于 靖等. 高温合金叶片定向凝固过程中辐射换热的计算 [J]. 金属学报, 2007, 43: 465
[23] YanX W, TangN, LiuX F, , et al. Modeling and simulation of directional solidification by LMC process for nickel base superalloy casting [J]. Acta Metall. Sin., 2015, 51: 1288
[23] 闫学伟, 唐 宁, 刘孝福等. 镍基高温合金铸件液态金属冷却定向凝固建模仿真及工艺规律研究 [J]. 金属学报, 2015, 51: 1288
[24] YuanL, LeeP D. A new mechanism for freckle initiation based on microstructural level simulation [J]. Acta Mater., 2012, 60: 4917
[25] ChenY, BognoA A, XiaoN M, , et al. Quantitatively comparing phase-field modeling with direct real time observation by synchrotron X-ray radiography of the initial transient during directional solidification of an Al-Cu alloy [J]. Acta Mater., 2012, 60: 199
[26] ThévozP, DesbiollesJ L, RappazM. Modeling of equiaxed microstructure formation in casting [J]. Metall. Trans., 1989, 20A: 311
[27] KurzW, GiovanolaB, TrivediR. Theory of microstructural development during rapid solidification [J]. Acta Metall., 1986, 34: 823
[28] SteinbachI, PezzollaF. A generalized field method for multiphase transformations using interface fields [J]. Physica, 1999, 134D: 385
[29] EikenJ, B?ttgerB, SteinbachI. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application [J]. Phys. Rev., 2006, 73E: 066122
[30] YangC, XuQ Y, LiuB C. Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: Multiphase-field study [J]. J. Mater. Sci., 2018, 53: 9755
[31] XuQ Y, YangC, ZhangH, , et al. Multiscale modeling and simulation of directional solidification process of Ni-based superalloy turbine blade casting [J]. Metals, 2018, 8: 632
[32] ElliottA J, PollockT M, TinS, , et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: A comparative assessment [J]. Metall. Mater. Trans., 2004, 35A: 3221
[33] ZhangH, XuQ Y, LiuB C. Numerical simulation and optimization of directional solidification process of single crystal superalloy casting [J]. Materials, 2014, 7: 1625
[34] ZhuM F, TangQ Y, ZhangQ Y, , et al. Cellular automaton modeling of micro-structure evolution during alloy solidification [J]. Acta Metall. Sin., 2016, 52: 1297
[34] 朱鸣芳, 汤倩玉, 张庆宇等. 合金凝固过程中显微组织演化的元胞自动机模拟 [J]. 金属学报, 2016, 52: 1297
[35] ShibutaY, SakaneS, TakakiT, , et al. Submicrometer-scale molecular dynamics simulation of nucleation and solidification from undercooled melt: Linkage between empirical interpretation and atomistic nature [J]. Acta Mater., 2016, 105: 328
[1] ZHAO Peng, XIE Guang, DUAN Huichao, ZHANG Jian, DU Kui. Recrystallization During Thermo-Mechanical Fatigue of Two High-Generation Ni-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1221-1229.
[2] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] JIANG He, NAI Qiliang, XU Chao, ZHAO Xiao, YAO Zhihao, DONG Jianxin. Sensitive Temperature and Reason of Rapid Fatigue Crack Propagation in Nickel-Based Superalloy[J]. 金属学报, 2023, 59(9): 1190-1200.
[5] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[6] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[7] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[8] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[9] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[10] CHEN Jia, GUO Min, YANG Min, LIU Lin, ZHANG Jun. Effects of W Concentration on Creep Microstructure and Property of Novel Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1209-1220.
[11] LI Jiarong, DONG Jianmin, HAN Mei, LIU Shizhong. Effects of Sand Blasting on Surface Integrity and High Cycle Fatigue Properties of DD6 Single Crystal Superalloy[J]. 金属学报, 2023, 59(9): 1201-1208.
[12] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[13] FENG Qiang, LU Song, LI Wendao, ZHANG Xiaorui, LI Longfei, ZOU Min, ZHUANG Xiaoli. Recent Progress in Alloy Design and Creep Mechanism of γ'-Strengthened Co-Based Superalloys[J]. 金属学报, 2023, 59(9): 1125-1143.
[14] MU Yahang, ZHANG Xue, CHEN Ziming, SUN Xiaofeng, LIANG Jingjing, LI Jinguo, ZHOU Yizhou. Modeling of Crack Susceptibility of Ni-Based Superalloy for Additive Manufacturing via Thermodynamic Calculation and Machine Learning[J]. 金属学报, 2023, 59(8): 1075-1086.
[15] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
No Suggested Reading articles found!