Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (9): 1133-1144    DOI: 10.11900/0412.1961.2019.00119
Overview Current Issue | Archive | Adv Search |
Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application
ZHANG Guoqing1,4,ZHANG Yiwen2,3,ZHENG Liang1,4(),PENG Zichao1
1. Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095, China
2. High Temperature Material Research Institute, Central Iron and Steel Research Institute, Beijing 100081, China
3. Beijing Key Laboratory of New Superalloy Materials, Central Iron and Steel Research Institute, Beijing 100081, China
4. AECC Additive Manufacturing Technology Innovation Center, Beijing 100095, China
Cite this article: 

ZHANG Guoqing,ZHANG Yiwen,ZHENG Liang,PENG Zichao. Research Progress in Powder Metallurgy Superalloys and Manufacturing Technologies for Aero-Engine Application. Acta Metall Sin, 2019, 55(9): 1133-1144.

Download:  HTML  PDF(20457KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The research progress in powder metallurgy (PM) superalloys and manufacturing technologies are reviewed. The key control factors of Ar gas atomization (AA) powder manufacturing are introduced, including the aspects of the equipment development, atomization process, particle size, oxygen content, powder morphology and inclusion control. For the turbine disk manufacturing technology, the research progress of dual-property turbine disk, dual-alloy integral turbine wheel technologies and isothermal forging die materials are summarized. In the field of basic research, high-throughput experiment, advanced characterization and creep behavior of PM superalloys were introduced. According to the current major demand for aero-engines and 3D printing, the future of PM superalloys manufacturing technology is prospected.

Key words:  aero-engine      powder metallurgy superalloy      Ar gas atomized powder manufacturing      turbine disk      manufacturing technology      3D printing powder      high-throughput experiment     
Received:  17 April 2019     
ZTFLH:  TG132.32,TG113  
Fund: Supported by National Key Research and Development Program of China(2017YFB0305800,2016YFB0701404);National Natural Science Foundation of China(51434007);Ministry of Industry and Information Technology of China /Horizon 2020 China-European Union Aeronautical Science & Technology Cooperation Program(MJ-2015-H-G-104);UK Diamond Light Source(EE10597)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00119     OR     https://www.ams.org.cn/EN/Y2019/V55/I9/1133

Fig.1  Development of powder metallurgy (PM) superalloys
GenerationAlloyNiCoCrMoWAlTiNbHfTaCBZrVRef.
1stIN100Bal.18.512.53.2-5.04.3---0.070.020.040.75[5]
Merl76Bal.18.512.43.2-5.04.31.40.4-0.020.020.06-[5]
René95Bal.8.013.03.53.53.53.52.5--0.070.010.05-[5]
LC AstroloyBal.17.015.05.0-4.03.5---0.040.0250.04-[5]
Udimet 720Bal.14.716.03.01.252.55.0---0.0150.0180.038-[5]
2ndRené88DTBal.13.016.04.04.02.13.70.7--0.030.0150.03-[5]
N18Bal.15.511.56.5-4.34.3-0.5-0.020.015--[5]
3rdRené104/ME3Bal.20.613.03.82.13.43.70.9-2.400.050.0250.05-[15]
LSHRBal.20.812.72.74.43.53.51.5-1.70.0240.0280.049-[15]
Alloy10Bal.15.010.22.86.23.73.81.9-0.900.030.0300.10-[15]
NR3Bal.14.711.83.3-3.75.5-0.33-0.0240.0130.052-[15]
RR1000Bal.18.515.05.0-3.03.6-0.52.000.0270.0150.06-[16]
Table 1  Chemical compositions of typical powder metallurgy superalloys[5,15,16] (mass fraction / %)
AlloyCCoBZrCr+W+MoAl+Ti+Nb+HfNi
FGH41030.0615.50.020.0119.59.5Bal.
FGH41040.0615.00.020.0218.510.5Bal.
FGH40970.0416.00.0150.01518.510.0Bal.
Table 2  Main chemical compositions of FGH4103, FGH4104 and FGH4097 PM superalloys (mass fraction / %)
Fig.2  Microstructures of FGH4103 (a), FGH4104 (b) and FGH4097 (c) PM superalloys
AlloyT / ℃σb / MPaσ0.2 / MPaδ / %Ψ / %
FGH410325151311561515
FGH410425163412191719
FGH409725150010502219
FGH4104700150011401917
FGH4097700128010102122
FGH4103750128010501921
FGH4104750135011101014
FGH409775012009802425
FGH410380011209851818
Table 3  Tensile properties of of FGH4103, FGH4104 and FGH4097 PM superalloys

Alloy

Stress rupture strength / MPaLCF strength (f=1 Hz) / MPa
650 ℃, 100 h750 ℃, 100 h650 ℃
FGH410311407501100 (2×104 cyc)
FGH410411106201120 (2×104 cyc)
FGH409710206801000 (0.5×104 cyc)
Table 4  Stress rupture and low cycle fatigue (LCF) strengths of FGH4103, FGH4104 and FGH4097 PM superalloys
Fig.3  Schematic of vacuum induction melting gas atomization (VIGA) powder manufacturing furnace
Fig.4  Gas-only flow field velocity magnitude profile and curve in axis
Fig.5  Simulation of liquid disintegration process(a) primary disintegration (b) secondary disintegration
Fig.6  Particle trajectory of powder with different particle diameters
Fig.7  Schematic of particle image velocimetry (PIV) experiment (a) and contour of velocity vector (b)
Fig.8  Droplet size with different atomized pressures (water atomization physical simulation)
Fig.9  Relationship between gas content and superalloy powder particle size
Fig.10  Morphology of Ar gas atomized superalloy powders
Fig.11  Macrostructure of dual-alloy auxiliary power unit (APU) turbine wheel
Fig.12  Calculated and experimentally measured creep test behavior at 700 ℃ for FGH96 alloy
Fig.13  High throughput experiment of microstructure evolution from powder to bulk superalloy (a) [52] and fast characterization of minor phase change by synchrotron X-ray diffraction (b) (Tcentre——centre temperature, Tγ'——γ' solvus temperature, TIM——incipient melting temperature, TL——liquidus temperature)
[1] SimsC T, StoloffN S, HagelW C. Superalloys II [M]. New York: Wiley, 1987: 1
[2] ReedR C. The Superalloys: Fundamentals and Applications [M]. Cambridge: Cambridge University Press, 2006: 2
[3] PollockT M, TinS. Nickel-based superalloys for advanced turbine engines: Chemistry, microstructure and properties [J]. J. Prop. Power, 2006, 22: 361
[4] ShiC X, ZhongZ Y. Development and innovation of superalloy in China [J]. Acta Metall. Sin., 2010, 46: 1281
[4] 师昌绪, 仲增墉. 我国高温合金的发展与创新 [J]. 金属学报, 2010, 46: 1281
[5] TianS F, ZhangG Q, LiZ, , et al. The disk superalloys and disk manufacturing technologies for advanced aero engine [J]. J.Aeronaut. Mater., 2003, 23(suppl.): 233
[5] 田世藩, 张国庆, 李 周等. 先进航空发动机涡轮盘合金及涡轮盘制造 [J]. 航空材料学报, 2003, 23(增刊):233)
[6] ZouJ W, WangW X. Development and application of P/M superalloy [J]. J. Aeronaut. Mater., 2006, 26(3): 244
[6] 邹金文, 汪武祥. 粉末高温合金研究进展与应用 [J]. 航空材料学报, 2006, 26(3): 244)
[7] ZhangG Q, TianS F, WangW X, , et al. Manufacturing and key technology of advanced aero-engine turbine disk [J]. Adv. Mater. Ind., 2009, (11): 16
[7] 张国庆, 田世藩, 汪武祥等. 先进航空发动机涡轮盘制备工艺及其关键技术 [J]. 新材料产业, 2009, (11): 16)
[8] ZhangY W, LiuJ T. Development in powder metallurgy superalloy [J]. Mater. China, 2013, 32: 1
[8] 张义文, 刘建涛. 粉末高温合金研究进展 [J]. 中国材料进展, 2013, 32: 1
[9] QuX H, ZhangG Q, ZhangL. Applications of powder metallurgy technologies in aero-engines [J]. J. Aeronaut. Mater., 2014, 34(1): 1
[9] 曲选辉, 张国庆, 章 林. 粉末冶金技术在航空发动机中的应用 [J]. 航空材料学报, 2014, 34(1): 1)
[10] SmytheJ. Superalloy powders: An amazing history [J]. Adv. Mater. Process., 2008, 11: 52
[11] TraceyV A, CutlerC P. High-temperature alloys from powders [J]. Powder Metall., 1981, 24: 32
[12] AllenM M, AtheyR L, MooreJ B. Application of powder metallurgy to superalloy forgings [J]. Met. Eng. Quart., 1970, 10(1): 20
[13] ZhengL, LiuY F, GorleyM J, , et al. Influencing factors on differential scanning calorimetry (DSC) analysis of superalloy II: Particle size and microstructure [J]. Rare Met. Mater. Eng., 2019, 48: 1591
[13] 郑 亮, 刘玉峰, Gorley M J等. 高温合金差示扫描量热分析(DSC)的影响因素研究II: 粉末粒度和显微组织 [J]. 稀有金属材料与工程, 2019, 48: 1591
[14] ZhengL, LiuY F, LiuY, , et al. Influencing factors on differential scanning calorimetry (DSC) analysis of superalloy III: Alloy state and heating/cooling rate [J]. Rare Met. Mater. Eng., 2019, 48: 1944
[14] 郑 亮, 刘玉峰, 刘 杨等. 高温合金差示扫描量热分析(DSC)的影响因素研究 III: 合金状态和升降温速率[J]. 稀有金属材料与工程, 2019, 48: 1944
[15] HuB F, LiuG Q, JiaC C, , et al. Development in new type high-performance P/M superalloys [J]. J. Mater. Eng., 2007, (2): 49
[15] 胡本芙, 刘国权, 贾成厂等. 新型高性能粉末高温合金的研究与发展 [J]. 材料工程, 2007, (2): 49)
[16] CroxallS A, HardyM C, StoneH J, , et al. The Microstructure of RR1000 nickel-base superalloy: The FIB-SEM dual-beam approach [A]. Proceedings of the 1st International Conference on 3D Materials Science [C]. Cham: Springer, 2012: 215
[17] PowellA, BainK, WessmanA, , et al. Advanced supersolvus nickel powder disk alloy DOE: Chemistry, properties, phase formations and thermal stability [A]. Proceedings of the 13th Intenational Symposium of Superalloys [C]. Warrendal, PA: TMS, 2016: 189
[18] SmithT M, EsserB D, AntolinN, , et al. Phase transformation strengthening of high-temperature superalloys [J]. Nat. Commun., 2016, 7: 13434
[19] ZhangY W, ChiY. Recent developments of powder metallurgy superalloy in Russia [J]. Powder Metall. Ind., 2012, 22(5): 37
[19] 张义文, 迟 悦. 俄罗斯粉末冶金高温合金研制新进展 [J]. 粉末冶金工业, 2012, 22(5): 37)
[20] ZhangY W, ChiY, LiuJ T. Recent development of new type powder metallurgy superalloys in Russia [J]. Powder Metall. Ind., 2015, 25(4): 1
[20] 张义文, 迟 悦, 刘建涛. 俄罗斯新型粉末高温合金研制进展 [J]. 粉末冶金工业, 2015, 25(4): 1)
[21] LiZ, ZhangG Q, ZhangY F, , et al. Structures and properties of argon-gas atomized superalloy powders [J]. Chin. J. Nonferrous Met., 2005, 15(S2): 335
[21] 李 周, 张国庆, 张翼飞等. 氩气雾化高温合金粉末的制备及其组织与性能 [J]. 中国有色金属学报, 2005, 15(增刊2): 335)
[22] LiuY, LiZ, ZhangG Q, , et al. Flow field of double layer atomizer [J]. J. Aeronaut. Mater., 2015, 35(5): 63
[22] 刘 杨, 李 周, 张国庆等. 双层雾化器流场的模拟研究 [J]. 航空材料学报, 2015, 35(5): 63)
[23] ChengH C. Flow and heat transfer characteristics of superalloy droplets under processes of atomization and cooling solidification [D]. Beijing: Beihang University, 2017
[23] 程会川. 高温合金熔滴在雾化冷却凝固过程中的流动换热特性研究 [D]. 北京: 北京航空航天大学, 2017
[24] ZeoliN, GuS. Computational validation of an isentropic plug nozzle design for gas atomisation [J]. Comput. Mater. Sci., 2008, 42: 245
[25] SunJ F, CaoF Y, CuiC S, , et al. Dynamic behaviors of gas velocity field during metal atomization [J]. Powder Metall. Technol., 2002, 20(2): 79
[25] 孙剑飞, 曹福洋, 崔成松等. 金属雾化过程中气体流场动力学行为 [J]. 粉末冶金技术, 2002, 20(2): 79)
[26] CzischC, FritschingU. Flow-adapted design option for free-fall atomizers [J]. Atomization Sprays, 2008, 18: 511
[27] SiC R, ZhangX J, WangJ B, , et al. Design and evaluation of a Laval-type supersonic atomizer for low-pressure gas atomization of molten metals [J]. Int. J. Miner. Metall. Mater., 2014, 21: 627
[28] TingJ, AndersonI E. A computational fluid dynamics (CFD) investigation of the wake closure phenomenon [J]. Mater. Sci. Eng., 2004, A379: 264
[29] ZhaoW J, CaoF Y, NingZ L, , et al. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer [J]. Comput. Chem. Eng., 2012, 40: 58
[30] LiuY. Research on the flow field of gas and the atomization of molten metal [D]. Beijing: Beijing Institute of Aeronautical Materials, 2013
[30] 刘 杨. 雾化气体流场及金属液流雾化行为的研究 [D]. 北京: 北京航空材料研究院, 2013
[31] LiuN, LiZ, ZhangG Q, , et al. Oxidation characteristics of nickel-based superalloy powders prepared by argon gas atomization [J]. Chin. J. Rare Met., 2011, 35: 481
[31] 刘 娜, 李 周, 张国庆等. 氩气雾化镍基高温合金粉末的氧化特性研究 [J]. 稀有金属, 2011, 35: 481
[32] HuronE S, RothP G. The influence of inclusions on low cycle fatigue life in a P/M Ni-base disk superalloy [A]. Superalloys 1996 [C]. Warrendal, PA: TMS, 1996: 359
[33] KantzosP, BonacuseP, TelesmanJ, , et al. Effect of powder cleanliness on the fatigue behavior of powder metallurgy Ni-disk alloy Udimet 720 [A]. Superalloys 2004 [C]. Warrendal, PA: TMS, 2004: 409
[34] AttallahM M, JenningsR, WangX Q, , et al. Additive manufacturing of Ni-based superalloys: The outstanding issues [J]. MRS Bull., 2016, 41: 758
[35] MourerD P, RaymondE, GaneshS, , et al. Dual alloy disk development [A]. Superalloys 1996 [C]. Warrendal, PA: TMS, 1996: 637
[36] WangY, ZouJ W, ZhangG Q, , et al. Research on gradient heat treatment of dual-property disk for alloy FGH96 [J]. Mater. Sci. Forum, 2013, 747-748: 783
[37] MollJ H, SehwertzH H, ChandhokV K. PM dual property wheels for small engines [J]. Met. Powder Report, 1983, 38: 547
[38] WangS Y, LiH Q, YangH T. Superplastic isothermal forging technology of P/M superalloy [J]. J. Aeronaut. Mater. 2007, 27(5): 30
[38] 王淑云, 李惠曲, 杨洪涛. 粉末高温合金超塑性等温锻造技术研究 [J]. 航空材料学报, 2007, 27(5): 30)
[39] FurrerD. Forging aerospace components [J]. Adv. Mater. Process., 1999, 155: 33
[40] OhuchiK, NakazawaY, MatsunoK I. Isothermal forging of nickel-base superalloy modified IN-100 disk [J]. Mater. Trans., 1989, 30: 67
[41] LiQ, HanY F, XiaoC B, , et al. R&D status of die materials for Isothermal forging at high temperature [J]. Mater. Rev., 2004, 18(4): 9
[41] 李 青, 韩雅芳, 肖程波等. 等温锻造用模具材料的国内外研究发展状况 [J]. 材料导报, 2004, 18(4): 9)
[42] XiaoC B, HanY F, SongJ X, , et al. Study on DM02 alloy used as die material for iso-thermal forging at 1050~1100 ℃ in air [J]. J. Mater. Eng., 2005, (2): 44
[42] 肖程波, 韩雅芳, 宋尽霞等. 1050~1100 ℃大气下等温锻造用模具材料DM02合金研究 [J]. 材料工程, 2005, (2): 44)
[43] ZhaoH B, WuC X, GuoL. Development of a die material for iso-thermal forging at 1100 ℃ [J]. J. Mater. Eng., 2009,(suppl.): 18
[43] 赵会彬, 吴昌新, 郭 灵. 1100 ℃等温锻造用模具材料的研制 [J]. 材料工程, 2009, (增刊):18)
[44] ZhengY R, ZhengL, ZengQ, , et al. Formation of primary M6C carbide and its effect on cast die superalloys with high content of tungsten [J]. Acta Metall. Sin., 2004, 40: 285
[44] 郑运荣, 郑 亮, 曾 强等. 初生M6C的形成及其对高钨铸造模具高温合金的影响 [J]. 金属学报, 2004, 40: 285
[45] ZhengL, ZhangG Q, LeeT L, , et al. The effects of Ta on the stress rupture properties and microstructural stability of a novel Ni-base superalloy for land-based high temperature applications [J]. Mater. Des., 2014, 61: 61
[46] ZhouT J, FengW, ZhaoH B, , et al. Coupling effects of tungsten and molybdenum on microstructure and stress-rupture properties of a nickel-base cast superalloy [J]. Prog. Nat. Sci.: Mater. Int., 2018, 28: 45
[47] ZhouT J, DingH S, MaX P, , et al. Microstructure and stress-rupture life of high W-content cast Ni-based superalloy after 1000-1100 ℃ thermal exposures [J]. Mater. Sci. Eng., 2018, A725: 299
[48] LiM Z, CoakleyJ, IsheimD, , et al. Influence of the initial cooling rate from γ′ supersolvus temperatures on microstructure and phase compositions in a nickel superalloy [J]. J. Alloys Compd., 2018, 732: 765
[49] PengZ C, TianG F, JiangJ, , et al. Mechanistic behaviour and modelling of creep in powder metallurgy FGH96 nickel superalloy [J]. Mater. Sci. Eng., 2016, A676: 441
[50] LiM Z, PhamM S, PengZ C, , et al. Creep deformation mechanisms and CPFE modelling of a nickel-base superalloy [J]. Mater. Sci. Eng., 2018, A718: 147
[51] XuW Y, PengZ C, LiM Z, , et al. Microstructure analysis and creep behaviour modelling of powder metallurgy superalloy [J]. Mater. Sci. Forum, 2018, 913: 134
[52] ZhengL, LeeT L, LiuN, , et al. Numerical and physical simulation of rapid microstructural evolution of gas atomised Ni superalloy powders [J]. Mater. Des., 2017, 117: 157
[1] BAI Jiaming, LIU Jiantao, JIA Jian, ZHANG Yiwen. Creep Properties and Solute Atomic Segregation of High-W and High-Ta Type Powder Metallurgy Superalloy[J]. 金属学报, 2023, 59(9): 1230-1242.
[2] ZHAO Wanchen, ZHENG Chen, XIAO Bin, LIU Xing, LIU Lu, YU Tongxin, LIU Yanjie, DONG Ziqiang, LIU Yi, ZHOU Ce, WU Hongsheng, LU Baokun. Composition Refinement of 6061 Aluminum Alloy Using Active Machine Learning Model Based on Bayesian Optimization Sampling[J]. 金属学报, 2021, 57(6): 797-810.
[3] ZHANG Rui, LIU Peng, CUI Chuanyong, QU Jinglong, ZHANG Beijiang, DU Jinhui, ZHOU Yizhou, SUN Xiaofeng. Present Research Situation and Prospect of Hot Working of Cast & Wrought Superalloys for Aero-Engine Turbine Disk in China[J]. 金属学报, 2021, 57(10): 1215-1228.
[4] HAO Zhibo, GE Changchun, LI Xinggang, TIAN Tian, JIA Chonglin. Effect of Heat Treatment on Microstructure and Mechanical Properties of Nickel-Based Powder Metallurgy Superalloy Processed by Selective Laser Melting[J]. 金属学报, 2020, 56(8): 1133-1143.
[5] SU Yanjing, FU Huadong, BAI Yang, JIANG Xue, XIE Jianxin. Progress in Materials Genome Engineering in China[J]. 金属学报, 2020, 56(10): 1313-1323.
[6] BI Zhongnan,QIN Hailong,DONG Zhiguo,WANG Xiangping,WANG Ming,LIU Yongquan,DU Jinhui,ZHANG Ji. Residual Stress Evolution and Its Mechanism During the Manufacture of Superalloy Disk Forgings[J]. 金属学报, 2019, 55(9): 1160-1174.
[7] FENG Yefei,ZHOU Xiaoming,ZOU Jinwen,WANG Chaoyuan,TIAN Gaofeng,SONG Xiaojun,ZENG Weihu. Interface Reaction Mechanism Between SiO2 and Matrix and Its Effect on the Deformation Behavior of Inclusionsin Powder Metallurgy Superalloy[J]. 金属学报, 2019, 55(11): 1437-1447.
[8] Yiwen ZHANG,Benfu HU. EFFECTS OF TOPOLOGICALLY CLOSE PACKED μ PHASE ON MICROSTRUCTURE AND PROPERTIES IN POWDER METALLURGY Ni-BASED SUPERALLOY WITH Hf[J]. 金属学报, 2016, 52(4): 445-454.
[9] Yiwen ZHANG,Benfu HU. FUNCTION OF MICROELEMENT Hf IN POWDER METALLURGY NICKEL-BASED SUPERALLOYS[J]. 金属学报, 2015, 51(8): 967-975.
[10] Yiwen ZHANG,Shoubo HAN,Jian JIA,Jiantao LIU,Benfu HU. EFFECT OF MICROELEMENT Hf ON THE MICRO- STRUCTURE OF POWDER METALLURGY SUPERALLOY FGH97[J]. 金属学报, 2015, 51(10): 1219-1226.
[11] LI Linhan, DONG Jianxin, ZHANG Maicang, YAO Zhihao. INTEGRATED SIMULATION OF THE FORGING PROCESS FOR GH4738 ALLOY TURBINE DISK AND ITS APPLICATION[J]. 金属学报, 2014, 50(7): 821-831.
[12] MI Guangbao, HUANG Xu, CAO Jingxia, CAO Chunxiao. IGNITION RESISTANCE PERFORMANCE AND ITS THEORETICAL ANALYSIS OF Ti-V-Cr TYPE FIREPROOF TITANIUM ALLOYS[J]. 金属学报, 2014, 50(5): 575-586.
[13] ZHANG Yiwen WANG Fuming HU Benfu. EFFECT OF HAFNIUM CONTENT ON MORPHOLOGY EVOLUTION OF γ′ PRECIPITATES IN P/M Ni–BASED SUPERALLOY[J]. 金属学报, 2012, 48(8): 1011-1017.
[14] NING Yongquan YAO Zekun. RECRYSTALLIZATION NUCLEATION MECHANISM OF FGH4096 POWDER METALLURGY SUPERALLOY[J]. 金属学报, 2012, 48(8): 1005-1010.
[15] HU Benfu LIU Guoquan WU Kai HU Penghui. MORPHOLOGICAL CHANGES BEHAVIOR OF FAN-TYPE STRUCTURES OF γ' PRECIPITATES IN NICKEL-BASED POWDER METALLURGY SUPERALLOYS[J]. 金属学报, 2012, 48(7): 830-836.
No Suggested Reading articles found!