Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (8): 951-957    DOI: 10.11900/0412.1961.2019.00014
Current Issue | Archive | Adv Search |
Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels
Xingpin CHEN1(),Wenjia LI1,Ping REN1,Wenquan CAO2,Qing LIU1
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2. Special Steel Department of Central Iron & Steel Research Institute, Beijing 100081, China
Cite this article: 

Xingpin CHEN,Wenjia LI,Ping REN,Wenquan CAO,Qing LIU. Effects of C Content on Microstructure and Properties ofFe-Mn-Al-C Low-Density Steels. Acta Metall Sin, 2019, 55(8): 951-957.

Download:  HTML  PDF(12111KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The lightweight Fe-Mn-Al-C steels (so-called low-density steels) have received great attentions as promising candidate for automobile structure applications due to their excellent combination of density reduction, mechanical properties and corrosion resistance. In previous studies, most examinations of the Fe-Mn-Al-C alloys focused on the deformation mechanisms and the relationship between the microstructure and mechanical properties. It is well known that chemical composition, especially C content, which enhances strength as the interstitial element and reduces the density of steels, plays an important role in the control of microstructure and performance. However, the influence of C element in the alloy with high Mn content is barely studied. In this work, the effects of C content on microstructure and mechanical properties of four Fe-30Mn-10Al-xC (x=0.53, 0.72, 1.21, 1.68, mass fraction, %) alloys were studied by EBSD, TEM, XRD and universal testing machine. The results show that with the increase of C content, the amount of austenite gradually increases and the ferrite/austenite dual-phase microstructure transforms into single phase austenite. In addition, the strength increases monotonously, while the elongation increases and then decreases ultimately with increasing C content. Statistical analysis reveals that the strain coordination capacity of austenite is higher than that of ferrite. Therefore, with the increase of austenite content, the ductility of the dual-phase steel remarkably increases, while the strength increases slightly. For single austenite steels, the yield strength increases but the elongation and work hardening ability decrease with increasing C content, which is related to the precipitation of κ′ carbides.

Key words:  low-density steel      Fe-Mn-Al-C alloy      mechanical property      austenite      ferrite     
Received:  17 January 2019     
ZTFLH:  TG142.1  
Fund: National Natural Science Foundation of China((Nos.51871062 and 51421001));and Fundamental Research Funds for the Central Universities(No.2018CDJDCL0019)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2019.00014     OR     https://www.ams.org.cn/EN/Y2019/V55/I8/951

Fig.1  EBSD showing microstructure of the experimental steels with different C contents(a) 0.53%C (b) 0.72%C (c) 1.21%C (d) 1.68%CColor online

C content

%

γ phase

%

α phase

%

Grain size

μm

0.5352.844.313.3
0.7272.326.011.3
1.2199.70.28.9
1.6899.70.19.5
Table 1  Phase fraction and grain size of the experimental steels
Fig.2  TEM image (a) and corresponding selected area electron diffraction pattern (b) of 1.68%C steel
Fig.3  XRD spectra (a) and a partial enlarged figure (b) of the experimental steels with different C contents

C content

%

2θ

(°)

Lattice parameter

nm

γαaγaα
0.5342.8644.290.3660.290
0.7242.7944.270.3660.290
1.2142.69-0.367-
1.6842.52-0.368-
Table 2  Experimental data obtained from the X-ray diffraction profiles of the present four steels
Fig.4  Tensile test results of the experimental steels with different C contents (a) engineering stress-strain curves (b) true stress-strain (σ-ε) curves and the corres-ponding strain hardening rate (dσ/dε-ε) curves (c) mechanical properties of the four steels
Fig.5  EBSD maps of austenite (a, c) and ferrite (b, d) in the 0.53%C steel before (a, b) and after (c, d) deformation (The numbers 1~5 indicate the aspect ratios of the grains)
Fig.6  Distributions of true strain in each grain of 0.53%C steel before (a) and after (b) deformation
[1] Ha M C, Koo J M, Lee J K, et al. Tensile deformation of a low density Fe-27Mn-12Al-0.8C duplex steel in association with ordered phases at ambient temperature [J]. Mater. Sci. Eng., 2013, A586: 276
[2] Welsch E, Ponge D, Haghighat S M H, et al. Strain hardening by dynamic slip band refinement in a high-Mn lightweight steel [J]. Acta Mater., 2016, 116: 188
[3] Gutierrez-Urrutia I, Raabe D. Multistage strain hardening through dislocation substructure and twinning in a high strength and ductile weight-reduced Fe-Mn-Al-C steel [J]. Acta Mater., 2012, 60: 5791
[4] Yao M J, Welsch E, Ponge D, et al. Strengthening and strain hardening mechanisms in a precipitation-hardened high-Mn lightweight steel [J]. Acta Mater., 2017, 140: 258
[5] Yanushkevich Z, Belyakov A, Kaibyshev R, et al. Effect of cold rolling on recrystallization and tensile behavior of a high-Mn steel [J]. Mater. Charact., 2016, 112: 180
[6] Chen X P, Xu Y P, Ren P, et al. Aging hardening response and β-Mn transformation behavior of high carbon high manganese austenitic low-density Fe-30Mn-10Al-2C steel [J]. Mater. Sci. Eng., 2017, A703: 167
[7] Scott C, Allain S, Faral M, et al. The development of a new Fe-Mn-C austenitic steel for automotive applications [J]. Rev. Met. Paris, 2006, 103: 293
[8] Choi K, Seo C H, Lee H, et al. Effect of aging on the microstructure and deformation behavior of austenite base lightweight Fe-28Mn-9Al-0.8C steel [J]. Scr. Mater., 2010, 63: 1028
[9] Ren P, Chen X P, Cao Z X, et al. Synergistic strengthening effect induced ultrahigh yield strength in lightweight Fe-30Mn-11Al-1.2C steel [J]. Mater. Sci. Eng., 2019, A752: 160
[10] Rana R. Low-density steels [J]. JOM, 2014, 66: 1730
[11] Kim Y G, Han J M, Lee J S. Composition and temperature dependence of tensile properties of austenitic Fe-Mn-Al-C alloys [J]. Mater. Sci. Eng., 1989, A114: 51
[12] Kalashnikov I, Shalkevich A, Acselrad O, et al. Chemical composition optimization for austenitic steels of the Fe-Mn-Al-C system [J]. J. Mater. Eng. Perform., 2000, 9: 597
[13] Hwang C N, Chao C Y, Liu T F. Grain boundary precipitation in an Fe-8.0Al-31.5Mn-1.05C alloy [J]. Scr. Metall. Mater., 1993, 28: 263
[14] Gutierrez-Urrutia I, Raabe D. High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides [J]. Mater. Sci. Technol., 2014, 30: 1099
[15] Chen S P, Rana R, Haldar A, et al. Current state of Fe-Mn-Al-C low density steels [J]. Prog. Mater. Sci., 2017, 89: 345
[16] Lin C L, Chao C G, Juang J Y, et al. Deformation mechanisms in ultrahigh-strength and high-ductility nanostructured FeMnAlC alloy [J]. J. Alloys Compd., 2014, 586: 616
[17] Sato K, Tagawa K, Inoue Y. Spinodal decomposition and mechanical properties of an austenitic Fe-30wt.%Mn-9wt.%Al-0.9wt.%C alloy [J]. Mater. Sci. Eng., 1989, A111: 45
[18] Chang K M, Chao C G, Liu T F. Excellent combination of strength and ductility in an Fe-9Al-28Mn-1.8C alloy [J]. Scr. Mater., 2010, 63: 162
[19] Chen P C, Chao C G, Liu T F. A novel high-strength, high-ductility and high-corrosion-resistance FeAlMnC low-density alloy [J]. Scr. Mater., 2013, 68: 380
[20] Wang C S, Hwang C N, Chao C G, et al. Phase transitions in an Fe-9Al-30Mn-2.0C alloy [J]. Scr. Mater., 2007, 57: 809
[21] Chu C M, Huang H, Kao P W, et al. Effect of alloying chemistry on the lattice constant of austenitic Fe-Mn-Al-C alloys [J]. Scr. Metall. Mater., 1994, 30: 505
[22] Seol J B, Jung J E, Jang Y W, et al. Influence of carbon content on the microstructure, martensitic transformation and mechanical properties in austenite/ε-martensite dual-phase Fe-Mn-C steels [J]. Acta Mater., 2013, 61: 558
[23] Sutou Y, Kamiya N, Umino R, et al. High-strength Fe-20Mn-Al-C-based alloys with low density [J]. ISIJ Int., 2010, 50: 893
[24] Ding H, Han D, Zhang J, et al. Tensile deformation behavior analysis of low density Fe-18Mn-10Al-xC steels [J]. Mater. Sci. Eng., 2016, A652: 69
[25] Wu X L, Yang M X, Yuan F P, et al. Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 14501
[26] Fan Z, Tsakiropoulos P, Miodownik A P. A generalized law of mixtures [J]. J. Mater. Sci., 1994, 29: 141
[27] Hwang S W, Ji J H, Lee E G, et al. Tensile deformation of a duplex Fe-20Mn-9Al-0.6C steel having the reduced specific weight [J]. Mater. Sci. Eng., 2011, A528: 5196
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] ZHAO Yafeng, LIU Sujie, CHEN Yun, MA Hui, MA Guangcai, GUO Yi. Critical Inclusion Size and Void Growth in Dual-Phase Ferrite-Bainite Steel During Ductile Fracture[J]. 金属学报, 2023, 59(5): 611-622.
[13] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[14] WANG Bin, NIU Mengchao, WANG Wei, JIANG Tao, LUAN Junhua, YANG Ke. Microstructure and Strength-Toughness of a Cu-Contained Maraging Stainless Steel[J]. 金属学报, 2023, 59(5): 636-646.
[15] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
No Suggested Reading articles found!