Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (8): 958-966    DOI: 10.11900/0412.1961.2018.00519
Current Issue | Archive | Adv Search |
Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet
Chao CAI1(),Yang LI1,Jinfeng LI2,Zhao ZHANG3,Jianqing ZHANG3
1. State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
2. School of Materials Science and Engineering, Central South University, Changsha 410083, China
3. Department of Chemistry, Zhejiang University, Hangzhou 310058, China
Cite this article: 

Chao CAI,Yang LI,Jinfeng LI,Zhao ZHANG,Jianqing ZHANG. Correlation Between Ageing Precipitation, Potential and Intergranular Corrosion of 2A97 Al-Li Alloy Sheet. Acta Metall Sin, 2019, 55(8): 958-966.

Download:  HTML  PDF(21625KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructures and open circuit potential (OCP) of 2A97 Al-Li alloy sheets with different ageing and their corrosion features in intergranular corrosion (IGC) medium were investigated. As the extension of ageing time, T1 (Al2CuLi) phases are precipitated, the alloy potential is decreased, which is accompanied with the following corrosion mode evolution: pitting, IGC (including local IGC and general IGC) and pitting again. Meanwhile, with ageing progress, the IGC depth is increased firstly and then decreased. Compared to T6 ageing, T8 ageing accelerates the precipitation of T1 phases, the potential therefore decreases more quickly. After a certain ageing, the lower the potential, the smaller the IGC degree, and the greater the pitting degree. A correlation between OCP and corrosion mode was proposed, which may be used to compare the IGC sensitivity of Al-Li alloy with different tempers.

Key words:  Al-Li alloy      ageing precipitation      intergranular corrosion      potential     
Received:  16 November 2018     
ZTFLH:  TG113  
Fund: National Natural Science Foundation of China (No.51741107)(No.51741107);Major Innovation Projects for Building First-Class Universities in China's Western Region(No.ZKZD17003);National First-Class Discipline Construction Project of Ningxia(No.NXYLXK2017A04)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00519     OR     https://www.ams.org.cn/EN/Y2019/V55/I8/958

Fig.1  Typical sectional corrosion morphologies of 2A97 Al-Li alloy with T6 ageing after corrosion test for 2 h (a), 4 h (b), 58 h (c) and 120 h (d)
Time / hDominating corrosion modeMax. IGC depth / μmMax. pitting depth / μm
0Pitting-120
2Local IGC140-
4General IGC238-
6General IGC221-
11.5Local IGC with pitting179101
22Local IGC with pitting134135
36Pitting with local IGC101192
45Pitting with local IGC72163
58Pitting with local IGC82151
68Pitting with slight IGC-199
72Pitting with slight IGC-227
98Pitting with slight IGC-167
120Pitting with slight IGC-181
Table 1  Corrosion type and maximum corrosion depth of 2A97 Al-Li alloy with T6 ageing after corrosion test for different time
Fig.2  Typical sectional corrosion morphologies of 2A97 Al-Li alloy with T8 ageing after corrosion test for 2 h (a), 4 h (b), 36 h (c) and 120 h (d)
Time / hDominating corrosion modeMax. IGC depth / μmMax. pitting depth / μm
0Pitting-125
1Pitting and local IGC60122
2Pitting and local IGC90120
4Pitting with local IGC115125
10Pitting-98
22Pitting-107
28Pitting-100
36Pitting-107
48Pitting-127
60Pitting-110
72Pitting-140
120Pitting-100
Table 2  Corrosion type and maximum corrosion depth of 2A97 Al-Li alloy with T8 ageing after corrosion test for different time
Fig.3  Polarization curves of 2A97 Al-Li alloy sheet with T6 ageing for different time
Fig.4  Open circuit potential of 2A97 Al-Li alloy sheet with T6 and T8 ageing for different time in 3.5%NaCl solution
Fig.5  TEM images of 2A97 Al-Li alloy with T6 ageing for 4 h (a, b), 12 h (c, d) and 60 h (e, f)(a, c, e) <100>Al direction (b, d, f) <112>Al direction
Fig.6  TEM images of 2A97 Al-Li alloy with T8 ageing for 4 h (a, b), 16 h (c, d) and 40 h (e, f)(a, c, e) <100>Al direction (b, d, f) <112>Al direction
Fig.7  Phenomenological corrosion diagram relating OCP evolution to corrosion mode
[1] Rioja R J, Liu J. The evolution of Al-Li base products for aerospace and space applications [J]. Metall. Mater. Trans., 2012, 43A: 3325
[2] Zhang X F, Li G A, Lu Z, et al. Effect of preaged stretch after quenched on the properties and microstructure of a naturally aged Al-Li alloy [J]. Acta Metall. Sin., 2016, 52: 1497
[2] (张显峰, 李国爱, 陆 政等. 淬火后预拉伸对自然时效状态Al-Li合金组织和性能的影响 [J]. 金属学报, 2016, 52: 1497)
[3] Zhang X L, Zhang L, Wu G H, et al. Influences of Mg content on the microstructures and mechanical properties of cast Al-2Li-2Cu-0.2Zr alloy [J]. J. Mater. Sci., 2019, 54: 791
[4] Yang Y, Zhou K, Li G J. Surface gradient microstructural characteristics and evolution mechanism of 2195 aluminum lithium alloy induced by laser shock peening [J]. Opt. Laser. Technol., 2019, 109: 1
[5] Wei X Y, Zheng Z Q, She L J, et al. Microalloying roles of Mg and Zn additions in 2099 Al-Li alloy [J]. Rare Met. Mater. Eng., 2010, 39: 1583
[5] (魏修宇, 郑子樵, 佘玲娟等. Mg、Zn在2099铝锂合金中的微合金化作用 [J]. 稀有金属材料与工程, 2010, 39: 1583)
[6] Luo X F, Zheng Z Q, Zhong J F, et al. Effects of Mg, Ag and Zn multi-alloying on aging behavior of new Al-Cu-lialloy [J]. Chin. J. Nonferrous Met., 2013, 23: 1833
[6] (罗先甫, 郑子樵, 钟继发等. Mg、Ag、Zn多元微合金化对新型Al-Cu-Li合金时效行为的影响 [J]. 中国有色金属学报, 2013, 23: 1833)
[7] Li J F, Birbilis N, Liu D Y, et al. Intergranular corrosion of Zn-free and Zn-microalloyed Al-xCu-y Lialloys [J]. Corros. Sci., 2016, 105: 44
[8] Liu D Y, Li J F, Ma Y L, et al. A closer look at the role of Zn in the microstructure and corrosion of an Al-Cu-Li alloy [J]. Corros. Sci., 145: 220
[9] Liu F J, Fu L, Zhang W Y. Interface structure and mechanical pro-perties of friction stir welding joint of 2099-T83/2060-T8 dissimilar Al-Li alloys [J]. Acta Metall. Sin., 2015, 51: 281
[9] (刘奋军, 傅 莉, 张纹源等. 2099-T83/2060-T8异质Al-Li合金搅拌摩擦焊搭接界面结构与力学性能 [J]. 金属学报, 2015, 51: 281)
[10] Liu W C, Feng S, Li Z Q, et al. Effect of rolling strain on microstructure and tensile properties of dual-phase Mg-8Li-3Al-2Zn-0.5Y alloy [J]. J. Mater. Sci. Technol., 2018, 34: 2256
[11] Zhou X, Liu Q, Liu R R, et al. Characterization of microstructure and mechanical properties of Mg-8Li-3Al-1Y alloy subjected to different rolling processes [J]. Met. Mater. Int., 2018, 24: 1359
[12] Donatus U, Berbel L O, Costa I. Qualitative use of potentiodynamic polarization and anodic hydrogen evolution in the assessment of corrosion susceptibility in AA2198-T851 Al-Cu-Li alloy [J]. Mater. Corros., 2018, 69: 1375
[13] Liu Q, Zhu R H, Liu D Y, et al. Correlation between artificial aging and intergranular corrosion sensitivity of a new Al-Cu-Li alloy sheet [J]. Mater. Corros., 2017, 68: 65
[14] Huang J L, Li J F, Liu D Y, et al. Correlation of intergranular corrosion behaviour with microstructure in Al-Cu-Li alloy [J]. Corros. Sci., 2018, 139: 215
[15] Proton V, Alexis J, Andrieu E, et al. The influence of artificial ageing on the corrosion behaviour of a 2050 aluminium-copper-lithium alloy [J]. Corros. Sci., 2014, 80: 494
[16] Cai C, Li J F, Wang H, et al. Dependence of intergranular corrosion sensitivity of Al-Li alloys on aging stage [J]. Rare Met. Mater. Eng., 2015, 44: 2523
[16] (蔡 超, 李劲风, 王 恒等. 铝锂合金晶间腐蚀敏感性与时效阶段的相关性 [J]. 稀有金属材料与工程, 2015, 44: 2523)
[17] Ning A L, Liu Z Y, Feng C, et al. Study of microstructure, electrical conductivity and stress corrosion resistance of Al-Zn-Mg-Cu alloys [J]. Trans. Mater. Heat Treat., 2008, 29(2): 108
[17] (宁爱林, 刘志义, 冯 春等. Al-Zn-Mg-Cu合金组织和电导率及抗应力腐蚀性能研究 [J]. 材料热处理学报, 2008, 29(2): 108)
[18] Guyot P, Cottignies L. Precipitation kinetics, mechanical strength and electrical conductivity of Al-Zn-Mg-Cu alloys [J]. Acta Mater., 1996, 44: 4161
[19] Zhang F, Shen J, Yan X D, et al. Dynamic softening mechanism of 2099 alloy during hot deformation process [J]. Acta Metall. Sin., 2014, 50: 691
[19] (张飞, 沈健, 闫晓东等. 2099合金热变形过程中的动态软化机制 [J]. 金属学报, 2014, 50: 691)
[20] Xia L, Zhan X H, Yu H S. Morphology and formation mechanism of equiaxed grains along the fusion boundary in Al-Li alloy weld seam [J]. Mater. Res. Exp., 2018, 5: 116523
[21] Li J F, Ye Z H, Liu D Y, et al. Influence of pre-deformation on aging precipitation behavior of three Al-Cu-Li alloys [J]. Acta Metall. Sin. (Engl. Lett.), 2017, 30: 133
[22] Gable B M, Zhu A W, Csontos A A, et al. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy [J]. J. Light Met., 2001, 1: 1
[23] Sun J, Wang C, Song J L, et al. Multi-functional application of oil-infused slippery Al surface: From anti-icing to corrosion resistance [J]. J. Mater. Sci., 2018, 53: 16099
[24] Li J F, Zheng Z Q, Li S C, et al. Simulation study on function mechanism of some precipitates in localized corrosion of Al alloy [J]. Corros. Sci., 2007, 49: 2436
[25] Li J F, Li C X, Peng Z W, et al. Corrosion mechanism associated with T1 and T2 precipitates of Al-Cu-Li alloys in NaCl solution [J]. J. Alloys Compd., 2008, 460: 688
[1] WANG Zongpu, WANG Weiguo, Rohrer Gregory S, CHEN Song, HONG Lihua, LIN Yan, FENG Xiaozheng, REN Shuai, ZHOU Bangxin. {111}/{111} Near Singular Boundaries in an Al-Zn-Mg-Cu Alloy Recrystallized After Rolling at Different Temperatures[J]. 金属学报, 2023, 59(7): 947-960.
[2] XIA Dahai, JI Yuanyuan, MAO Yingchang, DENG Chengman, ZHU Yu, HU Wenbin. Localized Corrosion Mechanism of 2024 Aluminum Alloy in a Simulated Dynamic Seawater/Air Interface[J]. 金属学报, 2023, 59(2): 297-308.
[3] ZHENG Chun, LIU Jiabin, JIANG Laizhu, YANG Cheng, JIANG Meixue. Effect of Tensile Deformation on Microstructure and Corrosion Resistance of High Nitrogen Austenitic Stainless Steels[J]. 金属学报, 2022, 58(2): 193-205.
[4] WANG Shuo, WANG Junsheng. Structural Evolution and Stability of the δ′/θ′/δ′ Composite Precipitate in Al-Li Alloys: A First-Principles Study[J]. 金属学报, 2022, 58(10): 1325-1333.
[5] ZHANG Haijun, QIU Shi, SUN Zhimei, HU Qingmiao, YANG Rui. First-Principles Study on Free Energy and Elastic Properties of Disordered β-Ti1-xNbx Alloy: Comparison Between SQS and CPA[J]. 金属学报, 2020, 56(9): 1304-1312.
[6] LI Shiju, LI Yang, CHEN Jianqiang, LI Zhonghao, XU Guangming, LI Yong, WANG Zhaodong, WANG Guodong. Segregation Behavior, Microstructure and Properties of 2099Al-Li Alloy Produced by Twin-Roll Casting Underthe Action of Electromagnetic Oscillation Field[J]. 金属学报, 2020, 56(6): 831-839.
[7] DUAN Lingjie,LIU Yongchang. Relationships Between Elastic Constants and EAM/FS Potential Functions for Cubic Crystals[J]. 金属学报, 2020, 56(1): 112-118.
[8] Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy[J]. 金属学报, 2019, 55(6): 709-719.
[9] Rongyao MA, Lin ZHAO, Changgang WANG, Xin MU, Xin WEI, Junhua DONG, Wei KE. Influence of Hydrostatic Pressure on the Thermodynamics and Kinetics of Metal Corrosion[J]. 金属学报, 2019, 55(2): 281-290.
[10] Jianfeng ZHANG, Qing LAN, Qichi LE. Investigation on the Change of Thermoelectric Power of Al-Fe Hypoeutectic Alloy Melt Caused by AC Magnetic Field[J]. 金属学报, 2018, 54(7): 1042-1050.
[11] Shenghu CHEN, Lijian RONG. Microstructure Evolution During Solution Treatment and Its Effects on the Properties of Ni-Fe-Cr Alloy[J]. 金属学报, 2018, 54(3): 385-392.
[12] Zhao CHENG, Shuai JIN, Lei LU. Effect of Electrolyte Temperature on Microstructures of Direct-Current Electrodeposited Nanotwinned Cu[J]. 金属学报, 2018, 54(3): 428-434.
[13] Junzhou CHEN, Liangxing LV, Liang ZHEN, Shenglong DAI. Quantitative Characterization on the Precipitation of AA 7055 Aluminum Alloy by SAXS[J]. 金属学报, 2017, 53(8): 897-906.
[14] Xiaosong ZHANG,Yong XU,Shihong ZHANG,Ming CHENG,Yonghao ZHAO,Qiaosheng TANG,Yuexia DING. Research on the Collaborative Effect of Plastic Deformation and Solution Treatment in the Intergranular Corrosion Property of Austenite Stainless Steel[J]. 金属学报, 2017, 53(3): 335-344.
[15] Lin ZHAO, Xin MU, Junhua DONG, Liping WU, Changgang WANG, Wei KE. Study on the Galvanic Current of Corrosion Behavior for AH32 Long-Scale Specimen in Simulated Tidal Zone[J]. 金属学报, 2017, 53(11): 1445-1452.
No Suggested Reading articles found!