Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (1): 33-44    DOI: 10.11900/0412.1961.2018.00482
Orginal Article Current Issue | Archive | Adv Search |
Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites
Gaohui WU(), Jing QIAO, Longtao JIANG
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Gaohui WU, Jing QIAO, Longtao JIANG. Research Progress on Principle of Dimensional Stability and Stabilization Design of Al and Its Composites. Acta Metall Sin, 2019, 55(1): 33-44.

Download:  HTML  PDF(3835KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dimensional stability refers to the materials' ability to maintain their original size during long-term storage or under service conditions. The key components of the angle, velocity and position sensors, such as the gyroscopes, star sensors and optical observation devices, are extreme sensitive to the micro-deformation of the materials, and the dimensional instability of the present materials has become to be the bottleneck problem that restricts the accuracy of the equipment. Deep research has been carried out abroad from the aspect of the microstructure modification by heat-treatment and pretension deformation treatment of metals since 1970s. However, the domestic research on the dimensional stability is rather weak, which was mainly focused on the effect of the residual stress, and the corresponding engineering application effect is not pronounced. In the present work, the research experience and main results of the authors and coworkers on dimensional stability for decades have been introduced, including novel characterization method of dimensional stability during long-term storage (without stress), and the basic evolution process of the phase-stability, microstructure-stability and the anisotropy behavior of the Al alloys, which was revealed by the novel characterization method. Furthermore, the basic design principles of high dimensional stability and the design ideas based on the dispersivity of reinforcements of the Al matrix composites have been introduced. Moreover, the microstructure characters and the application effect in practical engineering of the high dimensional stability optical-grade and instrument-grade SiC/2024Al composites have been described. Based on the theoretical analysis and the practice effects, it indicates that the accuracy and accuracy stability of the instruments is mainly depended on dimensional stability of the used materials, and the dimensional stability of the materials was mainly affected by its intrinsic deformation characteristics, while the effect of the residual stress was subordinate. The present work also indicates that the application of the dimensional stability principle is also instructive to the technology upgrading of the high precision components, such as precision bearings.

Key words:  dimensional stability      metal matrix composite      characterization method      composite design     
Received:  24 October 2018     
ZTFLH:  TB333  
Fund: Supported by National Natural Science Foundation of China (No.U1637201)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00482     OR     https://www.ams.org.cn/EN/Y2019/V55/I1/33

Fig.1  Temperature-time curve (a) and dimensional change-cycling times curve (b) of SiC/2024Al composites (T6) during cycling between -20 ℃ and 60 ℃ (dL—change in length, L0—original length)
Fig.2  Dimensional changes of 2024Al plate in different directions during holding at 190 ℃[11]
Al alloy or precipitated phase Density
gcm-3
Specific volume cm3g-1
2024Al 2.780 0.360
Al 2.698 0.371
Al2CuMg 3.552 0.282
Al2Cu 4.347 0.230
Mg2Si 1.940 0.515
Table 1  The specific volume of precipitated phases in 2024Al alloy
Fig.3  Dimensional changes of annealed SiC/2024Al composite during holding at 160 ℃[18]
(a) temperature-time curve
(b) strain-time curve
Fig.4  Dimensional changes of quenched SiC/2024Al and SiC/1199Al during holding at 160 ℃[18]
(a) temperature-time curve
(b) strain-time curves
Fig.5  Stress distributions at the particle/matrix interface in SiC/2024Al composites
(a) reinforced with 32 μm particles
(b) reinforced with 8 μm particles
(c) reinforced with 4 μm particles
Fig.6  Thermal expansion coefficients of SiC/2024Al composites obtained by three theoretical models (αcom, αm, αp—the coefficients of thermal expansion of SiC/2024Al composites, matrix and reinforcement, respectively; Km, Kp— bulk modulus of the composites and reinforcement, respectively)[28]
Particle size
μm
Dispersion parameter
DF0 DF1 / m DF2 / m2 DF3
10 8.59×1014 5.18×10-7 2.7×105 0.45
0.15 2.55×1020 7.68×10-9 1.8×107 0.45
Table 2  A calculation example of the dispersivity of reinforcement of 45%SiC/2024Al composites[15]
Fig.7  Matrix morphologies of aluminum matrix composites reinforced with different particle sizes[29]
(a) 10 μm SiC/2024Al (b) 150 nm Al2O3/6061Al (c, d) 150 nm SiC/2024Al
Materal

Density gcm-3
Thermal expansion coefficient
10-6 K-1
Thermal conductivity
Wm-1K-1
Elastic modulus GPa Yield strength MPa Micro yield strength
MPa
Thermal cycle stability
10-5
Instrument level SiC/2024Al 2.90 11~13 130~150 145~150 >420 >220 0.8~1.0
Optical grade SiC/2024Al 2.97 9~11 >130 >160 - 277 0.5~1.0
RJY50 Be 1.85 11.8 >150 309 240 ~100 >7
2024Al 1.85 23 150 71 345 <120 2~6
GCr15 7.81 13.3 36.7 212 1700
Table 3  Comparisons of dimensional stability of different materials[30]
Fig.8  Comparisons of dimensional stability of instrument-grade SiC/2024Al composites and traditional materials during thermal-cold cycling
Fig.9  Lumped transfer functions of ZL107 aluminum alloy (a) and SiC/2024Al composites (b) (f—frequency)[31]
Fig.10  Instrument grade SiC/2024Al composites gyroscope parts
Fig.11  SiC/2024Al composites optical camera parts
Fig.12  Instrument-grade SiC/2024Al composites steering parts for spacecraft propulsion
[1] Wu G H, Wang X F, Zhang Q. Method for detecting dimensional stability of solid materials [P]. Chin Pat, 03105719.5, 2003(武高辉, 王秀芳, 张强. 一种固体材料尺寸稳定性检测方法 [P]. 中国专利, 03105719.5, 2003)
[2] Хенкин М Л, ЛокшенИ Х. Размернаястабильностьметаллов и сплавов в производстветочногомашиностроения[M]. ЦайЛюян: переводДюШуфан, 1981: 3
[3] Marschall C W, Maringer R E.Dimensional Instability—An Introduction [M]. New York: Pergamon Press, 1977: 63
[4] Wang X Z, Ma L B, Zhong J M.Test method for micro-yield strength of beryllium material[J]. Phys. Chem. Test-Phys., 1998, 34(10): 20(王学泽, 马立斌, 钟景明. 铍材微屈服强度测试方法[J]. 理化检验-物理分册, 1998, 34(10): 20)
[5] Zhang L N, Zhu P, Zhou J Y.Resistance of metals to microstrain and its influential factors[J]. Acta Metall. Sin., 1990, 26: 208(张力宁, 朱平, 周锦银. 金属微应变抗力及其影响因素分析[J]. 金属学报, 1990, 26: 208)
[6] Zhang F, Jin C, Li X C, et al.Microyield behaviours of a 2024 aluminum alloy[J]. Chin. J. Nonferrous Met., 1998, 8(Suppl.1): 136(张帆, 金城, 李小璀等. 2024铝合金微屈服行为[J]. 中国有色金属学报, 1998, 8(增刊1): 136)
[7] Brown N, Lukens K F Jr. Microstrain in polycrystalline metals[J]. Acta Metall., 1961, 9: 106
[8] Carnahan R D, White J E.The microplastic behaviour of polycrystalline nickel[J]. Philos. Mag., 1964, 10: 513
[9] Song Y F, Ding X F, Zhao X J, et al.The effect of stress-aging on dimensional stability behavior of Al-Cu-Mg alloy[J]. J. Alloys Compd., 2017, 718: 298
[10] Song Y F, Ding X F, Xiao L R, et al.Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy[J]. J. Alloys Compd., 2017, 701: 508
[11] Xu L M.Research on anisotropy of dimensional stability for 2024 alluminium alloy sheet [D]. Harbin: Harbin Institute of Technology, 2012(徐丽敏. 2024铝合金板材尺寸稳定性各向异性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[12] Ke H B.Effect of aging precipitation on dimensional stability of 2024Al [D]. Harbin: Harbin Institute of Technology, 2011(柯慧彬. 时效析出对2024Al尺寸稳定性的影响 [D]. 哈尔滨: 哈尔滨工业大学, 2011)
[13] Lee J K, Earmme Y Y, Aaronson H I, et al.Plastic relaxation of the transformation strain energy of a misfitting spherical precipitate: Ideal plastic behavior[J]. Metall. Mater. Trans., 1980, 11A: 1837
[14] Mohn W R, Vukobratovich D.Recent applications of metal matrix composites in precision instruments and optical systems[J]. J. Mater. Eng., 1988, 10: 225
[15] Wang B.Effect of reinforcment dispersivity on PRMMCs's dimensional stability [D]. Harbin: Harbin Institute of Technology, 2012(王博. 增强相弥散度对PRMMCs尺寸稳定性影响的研究 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[16] Zhang J Y.Study on properties of silicon carbide particle reinforced aluminum composites [D]. Nanjing: Nanjing Aerospace University, 2006(张建云. 碳化硅颗粒增强铝基复合材料的性能研究 [D]. 南京: 南京航空航天大学, 2006)
[17] Zhang F, Jin C, Li X C, et al.Studies on microyield strength of SiCp/LY12 composite materials[J]. Mater. Guide, 1998, 12(2): 53(张帆, 金城, 李小璀等. SiCp/LY12复合材料微屈服强度的研究[J]. 材料导报, 1998, 12(2): 53)
[18] Wang X F.Study on dimensional stability of SiC/2024Al composites [D]. Harbin: Harbin Institute of Technology, 2003(王秀芳. SiC/2024Al复合材料尺寸稳定性研究 [D]. 哈尔滨: 哈尔滨工业大学, 2003)
[19] Chen S, Wang X F, Wu G H.Analysis of dimensional change law of SiCp/2024Al during aging [A]. 2004 China Materials Seminar[C]. Beijing, Chinese Materials Reseach Society, 2004: 418(陈苏, 王秀芳, 武高辉. SiCp/2024Al时效过程中的尺寸变化规律分析 [A]. 2004年中国材料研讨会论文摘要集[C]. 北京: 中国材料研究学会, 2004: 418)
[20] Prangnell P B, Stobbs W M.The effect of SiC particulate reinforcement on the ageing behaviour of aluminium-based matrix alloys [A]. Proceeding of 7th International Conference on Composites Materials [C]. Oxford: Pergamon Press, 1990: 573
[21] Chu H S, Liu K S, Yeh J W.Aging behavior and tensile properties of 6061Al-0.3 μmAl2O3 particle composites produced by reciprocating extrusion[J]. Scr. Mater., 2001, 45: 541
[22] Daoud A, Reif W.Influence of Al2O3 particulate on the aging response of A356 Al-based composites[J]. J. Mater. Process. Tech., 2002, 123: 313
[23] Pai B C, Ramani G, Pillai R M, et al.Role of magnesium in cast aluminium alloy matrix composites[J]. J. Mater. Sci., 1995, 30: 1903
[24] Zhang F, Li X C, Jin C, et al.Microyield behaviours of SiCp/2024A1 composite and 2024A1 alloy[J]. Acta Metall. Sin., 1998, 34: 713(张帆, 李小璀, 金城等. SiCp/2024A1复合材料及2024A1合金的微屈服行为[J]. 金属学报, 1998, 34: 713)
[25] Geiger A L, Jackson M.Low-expansion MMCs boost avionics[J]. Adv. Mater. Proc., 1989, 136: 23
[26] Geng L, Wen B X, Yao Z K.Thermal physical properties of squeeze casting SiCw/Al composites[J]. Acta Mater. Composit. Sin., 1996, 13(3): 48(耿林, 温丙先, 姚忠凯. 压铸SiCw/Al复合材料的热物理性能研究[J]. 复合材料学报, 1996, 13(3): 48)
[27] Lemieux S, Elomari S, Nemes J A, et al.Thermal expansion of isotropic duralcan metal-matrix composites[J]. J. Mater. Sci., 1998, 33: 4381
[28] Zhang Q.Microstructure and properties of high volume fractional aluminum matrix composite [D]. Harbin: Harbin Institute of Technology, 2003(张强. 高体积分数铝基复合材料的微观组织与性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2003)
[29] Wu G H.Introduction to the design of metal matrix composites [M]. Beijing: Science Press, 2016: 108(武高辉. 金属基复合材料设计引论 [M]. 北京: 科学出版社, 2016: 108)
[30] Wu G H, Jiang L T, Chen G Q, et al.Application progress of instrument grade Al matrix composites in inertial instruments[J]. Navigat. Position. Tim., 2014, 1(1): 63(武高辉, 姜龙涛, 陈国钦等. 仪表级复合材料在惯性仪表中的应用进展[J]. 导航定位与授时, 2014, 1(1): 63)
[31] Yang P J, Li L, Lei Z Q, et al.Research on the application of SiC/Al composite material on inertial device[J]. Navigat. Position. Tim., 2016, 3(6): 63(杨鹏军, 李良, 雷志强等. SiC/Al铝基复合材料在惯性器件上的应用研究[J]. 导航定位与授时, 2016, 3(6): 63)
[1] MA Guonan, ZHU Shize, WANG Dong, XIAO Bolv, MA Zongyi. Aging Behaviors and Mechanical Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2023, 59(12): 1655-1664.
[2] FAN Genlian, GUO Zhiqi, TAN Zhanqiu, LI Zhiqiang. Architecture Design Strategies and Strengthening-Toughening Mechanisms of Metal Matrix Composites[J]. 金属学报, 2022, 58(11): 1416-1426.
[3] ZHU Shize, WANG Dong, WANG Quanzhao, XIAO Bolv, MA Zongyi. Influence of Cu Content on the Negative Effect of Natural Aging in SiC/Al-Mg-Si-Cu Composites[J]. 金属学报, 2021, 57(7): 928-936.
[4] Huiyuan WANG,Chao LI,Zhigang LI,Jin XU,Hongjiang HAN,Zhiping GUAN,Jiawang SONG,Cheng WANG,Pinkui MA. Current Research and Future Prospect on the Preparation and Architecture Design of Nanomaterials Reinforced Light Metal Matrix Composites[J]. 金属学报, 2019, 55(6): 683-691.
[5] MA Guonan, WANG Dong, LIU Zhenyu, BI Sheng, ZAN Yuning, XIAO Bolv, MA Zongyi. Effect of Hot Pressing Temperature on Microstructure and Tensile Properties of SiC/Al-Zn-Mg-Cu Composites[J]. 金属学报, 2019, 55(10): 1319-1328.
[6] Xuexi ZHANG, Zhong ZHENG, Ying GAO, Lin GENG. Progress in High Throughput Fabrication and Characterization of Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 109-125.
[7] Bolü XIAO, Zhiye HUANG, Kai MA, Xingxing ZHANG, Zongyi MA. Research on Hot Deformation Behaviors of Discontinuously Reinforced Aluminum Composites[J]. 金属学报, 2019, 55(1): 59-72.
[8] Tongxiang FAN, Yue LIU, Kunming YANG, Jian SONG, Di ZHANG. Recent Progress on Interfacial Structure Optimization and Their Influencing Mechanism of Carbon Reinforced Metal Matrix Composites[J]. 金属学报, 2019, 55(1): 16-32.
[9] Yanqiu WANG,Kun WU,Fuhui WANG. EFFECTS OF SECOND PHASES ON MICROARC OXIDATION PROCESS OF MAGNESIUM BASE MATERIALS[J]. 金属学报, 2016, 52(6): 689-697.
[10] XU Shijiao XIAO Bolu LIU Zhenyu WANG Wenguang MA Zongyi. MICROSTRUCTURES AND MECHANICAL PROPERTIES OF CNT/Al COMPOSITES FABRICATED BY HIGH ENERGY BALL-MILLING METHOD[J]. 金属学报, 2012, 48(7): 882-888.
[11] SONG Meihui SONG Jian CHEN Guoqin WANG Ning WU Gaohui. DIMENSIONAL STABILITY OF 2D Cf/Mg--2.0Re--0.2Zr COMPOSITES[J]. 金属学报, 2009, 45(1): 119-123.
[12] Dongdong Gu; Yifu Shen. EFFECT OF La2O3 ON LASER SINTERING OF WC-CoP/Cu METAL MATRIX COMPOSITES[J]. 金属学报, 2007, 43(9): 968-976 .
[13] Bin Li; Qingyan Xu. 3D MICROSTRUCTURE SIMULATION OF Al-Si/SiCp COMPOSITES FOR STIR CASTING[J]. 金属学报, 2006, 42(8): 875-881 .
[14] ;. FINITE ELEMENT SIMULATION FOR CYCLIC DEFORMATION OF SiCP/6061Al ALLOY COMPOSITES[J]. 金属学报, 2006, 42(10): 1051-1055 .
[15] LI Bin; XU Qingyan; LI Xudong; LIU Baicheng. MICROSTRUCTURE SIMULATION OF Al-Si/SiCp COMPOSITES WITH PARTICLE PUSHING MODEL[J]. 金属学报, 2005, 41(12): 1303-1308 .
No Suggested Reading articles found!