Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (1): 1-15    DOI: 10.11900/0412.1961.2018.00456
Orginal Article Current Issue | Archive | Adv Search |
Progress on Multi-Dimensional Carbon Nanomaterials Reinforced Aluminum Matrix Composites: A Review
Naiqin ZHAO(), Xinghai LIU, Bowen PU
School of Materials Science and Engineering, Tianjin University, Tianjin 300350, China
Cite this article: 

Naiqin ZHAO, Xinghai LIU, Bowen PU. Progress on Multi-Dimensional Carbon Nanomaterials Reinforced Aluminum Matrix Composites: A Review. Acta Metall Sin, 2019, 55(1): 1-15.

Download:  HTML  PDF(9859KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Metal matrix composites (MMCs), especially aluminum matrix composites (AMCs), are widely used in the applications of aerospace, automotive, mechatronics and other areas due to the advantages of high specific strength, high specific modulus, and excellent thermal and electrical conductivity. In recent years, carbon nanomaterials as the reinforcement of MMCs, have attracted great attention for their outstanding mechanical and functional properties. This review focuses on the progress on preparation methods and mechanical properties of different dimensional carbon nanomaterials (0-D carbon nano-onions, 1-D carbon nanotubes, 2-D graphene et al.) reinforced AMCs. The design ideas of aluminum matrix composites with high strength and toughness through the structural construction have been summarized ranging from single- to multi-dimensional hybrid reinforcements, and the future research trends of MMCs have been prospected.

Key words:  carbon nanomaterial      aluminum matrix composite      preparation method      mechanical property      multi-dimension     
Received:  28 September 2018     
ZTFLH:  TG146.2  
Fund: Supported by National Natural Science Foundation of China (Nos.51531004 and 51472177)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00456     OR     https://www.ams.org.cn/EN/Y2019/V55/I1/1

Fig.1  Microstructure, preparation and mechanical property of carbon nonoonin (CNO) and CNO/Al composite(a) CNO fabricated by co-precipitation method[13](b) CNO/Al composite made by extrusion and casting processing[14](c) CNO synthesized by in situ chemical vapor deposition (CVD)[16](d) CNO/Al composite fabricated by flake powder metallurgy (FPM) (PPCVD—polymer pyrolysis CVD, CA—citric acid monohydrate)[17](e) TEM image of CNO[17](f) mechanical property of 1.2%CNO/Al (mass fraction) composite[17]
Fig.2  Preparation schematics of CNT/Al composite (CNT—carbon nanotube)
(a) wetting process of CNTs on aluminum foil (V-MWCNT—vertically aligned multi-walled carbon nanotube)[23]
(b) CNT/Al composite fabricated by laminated rolling followed with injection of CNT into Al foil[25]
(c) fabrication of the composite by melting method[27]
(d) processing of hot extrusion[30]
(e) equal channel angle pressing (ECAP) technology[31]
(f) CNT dispersed by friction stirring processing (FSP)[32]
Fig.3  Fabrication procedures, mechanism and morphology for CNT/Al composite
(a) schematic of homogeneous dispersion of CNT modified by PVA in aluminum slurry[34]
(b) schematic of the CNT adsorption mechanism on the Al@PVA surface[34]
(c) dispersion of CNT by liquid ball milling[36]
(d) SEM image of aluminum powder anchored with uniformly distributed CNT[36]
Fig.4  Fabrication procedures and morphologies of CNT/Al composites
(a, b) schematics for the fabrication of CNT(Ni)-Al composite powders by in situ CVD[39]
(c) TEM image of CNT/Al composite powder[39]
(d) HRTEM image of MWCNT[39]
(e) fabrication of CNT/Al composite by in situ growth, short-time milling and hot sintering[40]
(f) TEM image of 2.5%-CNT/Al composite bulk after 90 min ball milling and hot extrusion[40]
Fig.5  Preparation and microstructures of GO/Al composite (GO—graphene oxide)(a) schematic of GO/Al composite powder by electrostatic adsorption[63](b) SEM image of 0.5%GO (mass fraction) coated with aluminum powder[63](c) morphology of flake-like aluminum powder and GO after ball milling[65](d) TEM image along rolling direction, which shows the interface of GO-Al[66]
Fig.6  Processing of GN/Al composite catalyzed by Cu (a) and TEM image (b), and fabrication of Ni nanoparticles (NPs)-decorated graphene hybrid (Ni-NPs@GNP/Al) bulk composite by in situ method (c) and TEM image (d)[67,68]
Fig.7  Trade-off relationship of strength and elongation of traditional unitary dimensional CNP/Al composites
Fig.8  Morphologies and processing of rGO-CNT/Al composite (a~c), 3D CNT-GN@Cu powder (d~f) and 3D rebar GN (g~i)[102,113,114](a) illustration of the fabrication procedure of rGO-CNT/Al composite powders(b) SEM image of hybrid structure of rGO-CNT/Al composite powders(c) comparison of engineering stress-strain curves of rGO-CNT/Al, rGO/Al and CNT/Al composites(d) illustration of the fabrication process of 3D CNT-GN/Cu hybrid structure by in situ idea(e, f) TEM images of 3D CNT-GN@Cu powders(g) schematic of 3D rebar GN by powder metallurgy template method, which was obtained by changing the shape of precursor into screw-like morphology(h) SEM image of 3D rebar GN foam(i) combination of GN and surface-peeled CNT
[1] Guo W H, Liu C, Sun X M, et al.Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity[J]. J. Mater. Chem., 2012, 22: 903
[2] Murakami K, Nishida N, Osamura K, et al.Aluminization of high purity iron and stainless steel by powder liquid coating[J]. Acta Mater., 2004, 52: 2173
[3] Tian F, He C N.Fabrication and growth mechanism of carbon nanospheres by chemical vapor deposition[J]. Mater. Chem. Phys., 2010, 123: 351
[4] Miki-Yoshid M, Castillo R, Ramos S, et al.High resolution electron microscopy studies in carbon soots[J]. Carbon, 1994, 32: 231
[5] Wang Z X, Yu L P, Zhang W, et al.Carbon spheres synthesized by ultrasonic treatment[J]. Phys. Lett., 2003, 307A: 249
[6] Ugarte D.Curling and closure of graphitic networks under electron-beam irradiation[J]. Nature, 1992, 359: 707
[7] Sun X M, Li Y D.Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew. Chem., Int. Ed., 2004, 43: 597
[8] Miao J Y, Hwang D W, Chang C C, et al.Uniform carbon spheres of high purity prepared on kaolin by CCVD[J]. Diam. Relat. Mater., 2003, 12: 1368
[9] Robles Hernández F C, Calderon H A. Nanostructured Al/Al4C3 composites reinforced with graphite or fullerene and manufactured by mechanical milling and spark plasma sintering[J]. Mater. Chem. Phys., 2012, 132: 815
[10] Umemoto M, Masuyama K, Raviprasad K. Mechanical alloying of fullerene with metals [J]. Mater. Sci. Forum, 1997, 235-238: 47
[11] Harris P J F. Carbon Nanotubes and Related Structures [M]. Cambridge: Cambridge University Press, 1999: 1
[12] de Heer W A, Ugarte D. Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature[J]. Chem. Phys. Lett., 1993, 207: 480
[13] Hou J G, Li X, Wang H Q, et al.Cu-C60 interaction and nano-composite structures[J]. J. Phys. Chem. Solids, 2000, 61: 995
[14] Khalid F A, Beffort O, Klotz U E, et al.Study of microstructure and interfaces in an aluminium-C60 composite material[J]. Acta Mater., 2003, 51: 4575
[15] Watanabe H, Sugioka M, Fukusumi M, et al.Mechanical and damping properties of fullerene-dispersed AZ91 magnesium alloy composites processed by a powder metallurgy route[J]. Mater. Trans., 2006, 47: 999
[16] He C N, Zhao N Q, Du X W, et al.Low-temperature synthesis of carbon onions by chemical vapor deposition using a nickel catalyst supported on aluminum[J]. Scr. Mater., 2006, 54: 689
[17] Zhao R Y, Xu R, Fan G L, et al.Reinforcement with in-situ synthesized carbon nano-onions in aluminum composites fabricated by flake powder metallurgy[J]. J. Alloys Compd., 2015, 650: 217
[18] He C N, Zhao N Q, Shi C S, et al.Fabrication of nanocarbon composites using in situ chemical vapor deposition and their applications[J]. Adv. Mater., 2015, 27: 5422
[19] Oh S I, Lim J Y, Kim Y C, et al.Fabrication of carbon nanofiber reinforced aluminum alloy nanocomposites by a liquid process[J]. J. Alloys Compd., 2012, 542: 111
[20] Iijima S.Helical microtubules of graphitic carbon[J]. Nature, 1991, 354: 56
[21] Golberg D, Bai X D, Mitome M, et al.Structural peculiarities of in situ deformation of a multi-walled BN nanotube inside a high-resolution analytical transmission electron microscope[J]. Acta Mater., 2007, 55: 1293
[22] Bakshi S R, Lahiri D, Agarwal A.Carbon nanotube reinforced metal matrix composites—A review[J]. Int. Mater. Rev., 2010, 55: 41
[23] So K P, Lee I H, Duong D L, et al.Improving the wettability of aluminum on carbon nanotubes[J]. Acta Mater., 2011, 59: 3313
[24] Liu Z Y, Xiao B L, Wang W G, et al.Modelling of carbon nanotube dispersion and strengthening mechanisms in Al matrix composites prepared by high energy ball milling-powder metallurgy method[J]. Composites, 2017, 94A: 189
[25] Lahiri D, Bakshi S R, Keshri A K, et al.Dual strengthening mechanisms induced by carbon nanotubes in roll bonded aluminum composites[J]. Mater. Sci. Eng., 2009, A523: 263
[26] Bakshi S R, Agarwal A.An analysis of the factors affecting strengthening in carbon nanotube reinforced aluminum composites[J]. Carbon, 2011, 49: 533
[27] Park J G, Keum D H, Lee Y H.Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690
[28] Zhou W W, Yamaguchi T, Kikuchi K, et al.Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites[J]. Acta Mater., 2017, 125: 369
[29] Park J G, Keum D H, Lee Y H.Strengthening mechanisms in carbon nanotube-reinforced aluminum composites[J]. Carbon, 2015, 95: 690
[30] Kwon H, Estili M, Takagi K, et al.Combination of hot extrusion and spark plasma sintering for producing carbon nanotube reinforced aluminum matrix composites[J]. Carbon, 2009, 47: 570
[31] Zare H, Jahedi M, Toroghinejad M R, et al.Microstructure and mechanical properties of carbon nanotubes reinforced aluminum matrix composites synthesized via equal-channel angular pressing[J]. Mater. Sci. Eng., 2016, A670: 205
[32] Liu Z Y, Xiao B L, Wang W G, et al.Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing[J]. Carbon, 2012, 50: 1843
[33] Choi H J, Shin J H, Bae D H.The effect of milling conditions on microstructures and mechanical properties of Al/MWCNT composites[J]. Composites, 2012, 43A: 1061
[34] Jiang L, Fan G L, Li Z Q, et al.An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder[J]. Carbon, 2011, 49: 1965
[35] Liu Z Y, Zhao K, Xiao B L, et al.Fabrication of CNT/Al composites with low damage to CNTs by a novel solution-assisted wet mixing combined with powder metallurgy processing[J]. Mater. Des., 2016, 97: 424
[36] Chen B, Li S F, Imai H, et al.An approach for homogeneous carbon nanotube dispersion in Al matrix composites[J]. Mater. Des., 2015, 72: 1
[37] Guo B S, Zhang X M, Cen X, et al.Enhanced mechanical properties of aluminum based composites reinforced by chemically oxidized carbon nanotubes[J]. Carbon, 2018, 139: 459
[38] Subrahmanyam J, Vijayakumar M.Self-propagating high-temperature synthesis[J]. J. Mater. Sci., 1992, 27: 6249
[39] He C N, Zhao N Q, Shi C S, et al.An Approach to obtaining homogeneously dispersed carbon nanotubes in Al powders for preparing reinforced Al-matrix composites[J]. Adv. Mater., 2007, 19: 1128
[40] Yang X D, Liu E Z, Shi C S, et al.Fabrication of carbon nanotube reinforced Al composites with well-balanced strength and ductility[J]. J. Alloys Compd., 2013, 563: 216
[41] Palermo V, Kinloch I A, Ligi S, et al.Nanoscale mechanics of graphene and graphene oxide in composites: A scientific and technological perspective[J]. Adv. Mater., 2016, 28: 6232
[42] Xue C, Bai H, Tao P F, et al.Analysis on thermal conductivity of graphite/Al composite by experimental and modeling study[J]. J. Mater. Eng. Perform., 2017, 26: 327
[43] Wang J W, Zhang X Z, Xue C, et al.Effects of Si coated on graphite surface on the thermal and mechanical properties of graphite/Al composites[J]. Acta Mater. Compos. Sin., 2017, 34: 836(王俊伟, 张现周, 薛晨 等. 石墨表面镀Si对石墨/Al复合材料热物理性能的影响 [J]. 复合材料学报, 2017, 34: 836)
[44] Wang C, Bai H, Xue C, et al.On the influence of carbide coating on the thermal conductivity and flexural strength of X (X=SiC, TiC) coated graphite/Al composites[J]. RSC Adv., 2016, 6: 107483
[45] Akhlaghi F, Pelaseyyed S A.Characterization of aluminum/graphite particulate composites synthesized using a novel method termed "in-situ powder metallurgy"[J]. Mater. Sci. Eng., 2004, A385: 258
[46] Novoselov K S, Geim A K, Morozov S V, et al.Electric field effect in atomically thin carbon films[J]. Science, 2004, 306: 666
[47] Cao Y C, Guo M M.Graphene materials and its applications[J]. Petrochem. Technol., 2016, 45: 1149(曹宇臣, 郭鸣明. 石墨烯材料及其应用 [J]. 石油化工, 2016, 45: 1149)
[48] Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature, 2006, 442: 282
[49] Ramanathan T, Abdala A A, Stankovich S, et al.Functionalized graphene sheets for polymer nanocomposites[J]. Nat. Nanotechnol., 2008, 3: 327
[50] Liang J J, Xu Y F, Huang Y, et al.Infrared-triggered actuators from graphene-based nanocomposites[J]. J. Phys. Chem., 2009, 113C: 9921
[51] Ji F, Li Y L, Feng J M, et al.Electrochemical performance of graphene nanosheets and ceramic composites as anodes for lithium batteries[J]. J. Mater. Chem., 2009, 19: 9063
[52] Walker L S, Marotto V R, Rafiee M A, et al.Toughening in graphene ceramic composites[J]. ACS Nano, 2011, 5: 3182
[53] Fan Y C, Wang L J, Li J L, et al.Preparation and electrical properties of graphene nanosheet/Al2O3 composites[J]. Carbon, 2010, 48: 1743
[54] Choi H, Kim H, Hwang S, et al.Electrochemical electrodes of graphene-based carbon nanotubes grown by chemical vapor deposition[J]. Scr. Mater., 2011, 64: 601
[55] Chen C, Zhuo W T, Zheng W G, et al.Preparation and characterization of water-soluble graphene and highly conducting films[J]. J. Inorg. Mater., 2011, 26: 707
[56] Yuan X Y.Progress in preparation of graphene[J]. J. Inorg. Mater., 2011, 26: 561
[57] Wang L, Tian L H, Wei G D, et al.Epitaxial growth of graphene and their applications in devices[J]. J. Inorg. Mater., 2011, 26: 1009
[58] Bartolucci S F, Paras J, Rafiee M A, et al.Graphene-aluminum nanocomposites[J]. Mater. Sci. Eng., 2011, A528: 7933
[59] Li G, Xiong B W.Effects of graphene content on microstructures and tensile property of graphene-nanosheets/aluminum composites[J]. J. Alloys Compd., 2017, 697: 31
[60] Shao P Z, Yang W S, Zhang Q, et al.Microstructure and tensile properties of 5083 Al matrix composites reinforced with graphene oxide and graphene nanoplates prepared by pressure infiltration method[J]. Composites, 2018, 109A: 151
[61] Rashad M, Pan F S, Tang A T, et al.Effect of graphene nanoplatelets addition on mechanical properties of pure aluminum using a semi-powder method[J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 101
[62] Yolshina L A, Muradymov R V, Korsun I V, et al.Novel aluminum-graphene and aluminum-graphite metallic composite materials: Synthesis and properties[J]. J. Alloys Compd., 2016, 663: 449
[63] Gao X, Yue H Y, Guo E J, et al.Preparation and tensile properties of homogeneously dispersed graphene reinforced aluminum matrix composites[J]. Mater. Des., 2016, 94: 54
[64] Zhang Z W, Liu Z Y, Xiao B L, et al.High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing[J]. Carbon, 2018, 135: 215
[65] Wang J Y, Li Z Q, Fan G L, et al.Reinforcement with graphene nanosheets in aluminum matrix composites[J]. Scr. Mater., 2012, 66: 594
[66] Li Z, Guo Q, Li Z Q, et al.Enhanced mechanical properties of graphene (reduced graphene oxide)/aluminum composites with a bioinspired nanolaminated structure[J]. Nano Lett., 2015, 15: 8077
[67] Liu X H, Li J J, Sha J W, et al.In-situ synthesis of graphene nanosheets coated copper for preparing reinforced aluminum matrix composites[J]. Mater. Sci. Eng., 2018, A709: 65
[68] Liu G, Zhao N Q, Shi C S, et al.In-situ synthesis of graphene decorated with nickel nanoparticles for fabricating reinforced 6061Al matrix composites[J]. Mater. Sci. Eng., 2017, A699: 185
[69] Zhao D M, Li Z W, Liu L D, et al.Progress of preparation and application of graphene/carbon nanotube composite materials[J]. Acta Chim. Sin., 2014, 72: 185(赵冬梅, 李振伟, 刘领弟等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72: 185)
[70] Wang M Z, Tang M, Chen S L, et al.Graphene-armored aluminum foil with enhanced anticorrosion performance as current collectors for lithium-ion battery[J]. Adv. Mater., 2017, 29: 1703882
[71] Qi J L, Lin J H, Wang X, et al.Low resistance VFG-microporous hybrid Al-based electrodes for supercapacitors[J]. Nano Energy, 2016, 26: 657
[72] Kwon H, Park D H, Silvain J F, et al.Investigation of carbon nanotube reinforced aluminum matrix composite materials[J]. Compos. Sci. Technol., 2010, 70: 546
[73] Jiang L, Li Z Q, Fan G L, et al.Strong and ductile carbon nanotube/aluminum bulk nanolaminated composites with two-dimensional alignment of carbon nanotubes[J]. Scr. Mater., 2012, 66: 331
[74] Yoo S J, Han S H, Kim W J.Strength and strain hardening of aluminum matrix composites with randomly dispersed nanometer-length fragmented carbon nanotubes[J]. Scr. Mater., 2013, 68: 711
[75] Wei H, Li Z Q, Xiong D B, et al.Towards strong and stiff carbon nanotube-reinforced high-strength aluminum alloy composites through a microlaminated architecture design[J]. Scr. Mater., 2014, 75: 30
[76] Mansoor M, Shahid M.Carbon nanotube-reinforced aluminum composite produced by induction melting[J]. J. Appl. Res. Technol., 2016, 14: 215
[77] Meng X, Liu T, Shi C S, et al.Synergistic effect of CNTs reinforcement and precipitation hardening in in-situ CNTs/Al-Cu composites[J]. Mater. Sci. Eng., 2015, A633: 103
[78] Yan H, Qiu H X.Fabrication of carbon nanotube reinforced A356 nanocomposites[J]. J. Mater. Res., 2016, 31: 2277
[79] Chen B, Kondoh K, Imai H, et al.Simultaneously enhancing strength and ductility of carbon nanotube/aluminum composites by improving bonding conditions[J]. Scr. Mater., 2016, 113: 158
[80] He T B, He X L, Tang P J, et al.The use of cryogenic milling to prepare high performance Al2009 matrix composites with dispersive carbon nanotubes[J]. Mater. Des., 2017, 114: 373
[81] Xu R, Tan Z Q, Xiong D B, et al.Balanced strength and ductility in CNT/Al composites achieved by flake powder metallurgy via shift-speed ball milling[J]. Composites, 2017, 96A: 57
[82] Zhao K, Liu Z Y, Xiao B L, et al.Origin of insignificant strengthening effect of CNTs in T6-treated CNT/6061Al composites[J]. Acta Metall. Sin.(Eng. Lett.), 2018, 31: 134
[83] Fadavi Boostani A, Tahamtan S, Jiang Z Y, et al.Enhanced tensile properties of aluminium matrix composites reinforced with graphene encapsulated SiC nanoparticles[J]. Composites, 2015, 68A: 155
[84] Shin S E, Bae D H.Deformation behavior of aluminum alloy matrix composites reinforced with few-layer graphene[J]. Composites, 2015, 78A: 42
[85] Fadavi Boostani A, Yazdani S, Taherzadeh Mousavian R, et al.Strengthening mechanisms of graphene sheets in aluminium matrix nanocomposites[J]. Mater. Des., 2015, 88: 983
[86] Shin S E, Choi H J, Shin J H, et al.Strengthening behavior of few-layered graphene/aluminum composites[J]. Carbon, 2015, 82: 143
[87] Zhang H P, Xu C, Xiao W L, et al.Enhanced mechanical properties of Al5083 alloy with graphene nanoplates prepared by ball milling and hot extrusion[J]. Mater. Sci. Eng., 2016, A658: 8
[88] Sun Y H, Zhang C, Liu B C, et al.Reduced graphene oxide reinforced 7075 Al matrix composites: Powder synthesis and mechanical properties[J]. Metals, 2017, 7: 499
[89] Zhao M, Xiong D B, Tan Z Q, et al.Lateral size effect of graphene on mechanical properties of aluminum matrix nanolaminated composites[J]. Scr. Mater., 2017, 139: 44
[90] Mukherjee B, Kumar R, Islam A, et al.Evaluation of strength-ductility combination by in-situ tensile testing of graphene nano platelets reinforced shroud plasma sprayed nickel-aluminium coating[J]. J. Alloys Compd., 2018, 765: 1082
[91] Prashantha Kumar H G, Prabhakaran S, Anthony Xavior M, et al. Enhanced surface and mechanical properties of bioinspired nanolaminate graphene-aluminum alloy nanocomposites through laser shock processing for engineering applications[J]. Mater. Today, 2018, 16: 81
[92] Jiang Y Y, Tan Z Q, Xu R, et al.Tailoring the structure and mechanical properties of graphene nanosheet/aluminum composites by flake powder metallurgy via shift-speed ball milling[J]. Composites, 2018, 111A: 73
[93] Zhou W W, Fan Y C, Feng X P, et al.Creation of individual few-layer graphene incorporated in an aluminum matrix[J]. Composites, 2018, 112A: 168
[94] Yang W S, Zhao Q Q, Xin L, et al.Microstructure and mechanical properties of graphene nanoplates reinforced pure Al matrix composites prepared by pressure infiltration method[J]. J. Alloys Compd., 2018, 732: 748
[95] Dixit S, Mahata A, Mahapatra D R, et al.Multi-layer graphene reinforced aluminum—Manufacturing of high strength composite by friction stir alloying[J]. Composites, 2018, 136B: 63
[96] Jo I, Cho S, Kim H, et al.Titanium dioxide coated carbon nanofibers as a promising reinforcement in aluminum matrix composites fabricated by liquid pressing process[J]. Scr. Mater., 2016, 112: 87
[97] Romano M S, Li N, Antiohos D, et al.Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications[J]. Adv. Mater., 2013, 25: 6602
[98] Zhang C, Ren L L, Wang X Y, et al.Graphene oxide-assisted dispersion of pristine multiwalled carbon nanotubes in aqueous media[J]. J. Phys. Chem., 2010, 114C: 11435
[99] Shin M K, Lee B, Kim S H, et al.Synergistic toughening of composite fibres by self-alignment of reduced graphene oxide and carbon nanotubes[J]. Nat. Commun., 2012, 3: 650
[100] Li W K, Dichiara A, Bai J B.Carbon nanotube-graphene nanoplatelet hybrids as high-performance multifunctional reinforcements in epoxy composites[J]. Compos. Sci. Technol., 2013, 74: 221
[101] Rashad M, Pan F S, Tang A T, et al.Synergetic effect of graphene nanoplatelets (GNPs) and multi-walled carbon nanotube (MW-CNTs) on mechanical properties of pure magnesium[J]. J. Alloys Compd., 2014, 603: 111
[102] Li Z, Fan G L, Guo Q, et al.Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites[J]. Carbon, 2015, 95: 419
[103] Nieto A, Dua R, Zhang C, et al.Three dimensional graphene foam/polymer hybrid as a high strength biocompatible scaffold[J]. Adv. Funct. Mater., 2015, 25: 3916
[104] Lin Y, Liu S Q, Liu L.A new approach to construct three dimensional segregated graphene structures in rubber composites for enhanced conductive, mechanical and barrier properties[J]. J. Mater. Chem., 2016, 4C: 2353
[105] Chen Z P, Ren W C, Gao L B, et al.Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition[J]. Nat. Mater., 2011, 10: 424
[106] Jia J J, Sun X Y, Lin X Y, et al.Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites[J]. ACS Nano, 2014, 8: 5774
[107] Chen Y K, Zhang X, Liu E Z, et al.Fabrication of in-situ grown graphene reinforced Cu matrix composites[J]. Sci. Rep., 2016, 6: 19363
[108] Wang X F, Chen Y C, Li B Y.Aligning 3D nanofibrous networks from self-assembled phenylalanine nanofibers[J]. RSC Adv., 2015, 5: 8022
[109] Zhang X, Shi C S, Liu E Z, et al.Achieving high strength and high ductility in metal matrix composites reinforced with a discontinuous three-dimensional graphene-like network[J]. Nanoscale, 2017, 9: 11929
[110] Yang M, Weng L, Zhu H X, et al.Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons[J]. Carbon, 2017, 118: 250
[111] Kosynkin D V, Higginbotham A L, Sinitskii A, et al.Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons[J]. Nature, 2009, 458: 872
[112] Jiao L Y, Zhang L, Wang X R, et al.Narrow graphene nanoribbons from carbon nanotubes[J]. Nature, 2009, 458: 877
[113] Zhang X, Shi C S, Liu E Z, et al.In-situ space-confined synthesis of well-dispersed three-dimensional graphene/carbon nanotube hybrid reinforced copper nanocomposites with balanced strength and ductility[J]. Composites, 2017, 103A: 178
[114] Sha J W, Salvatierra R V, Dong P, et al.Three-dimensional rebar graphene[J]. ACS Appl. Mater. Interfaces, 2017, 9: 7376
[115] Yan Z, Peng Z W, Casillas G, et al.Rebar graphene[J]. ACS Nano, 2014, 8: 5061
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHENG Liang, ZHANG Qiang, LI Zhou, ZHANG Guoqing. Effects of Oxygen Increasing/Decreasing Processes on Surface Characteristics of Superalloy Powders and Properties of Their Bulk Alloy Counterparts: Powders Storage and Degassing[J]. 金属学报, 2023, 59(9): 1265-1278.
[4] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[5] DING Hua, ZHANG Yu, CAI Minghui, TANG Zhengyou. Research Progress and Prospects of Austenite-Based Fe-Mn-Al-C Lightweight Steels[J]. 金属学报, 2023, 59(8): 1027-1041.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[8] YUAN Jianghuai, WANG Zhenyu, MA Guanshui, ZHOU Guangxue, CHENG Xiaoying, WANG Aiying. Effect of Phase-Structure Evolution on Mechanical Properties of Cr2AlC Coating[J]. 金属学报, 2023, 59(7): 961-968.
[9] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[10] HOU Juan, DAI Binbin, MIN Shiling, LIU Hui, JIANG Menglei, YANG Fan. Influence of Size Design on Microstructure and Properties of 304L Stainless Steel by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 623-635.
[11] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[12] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
[13] MA Zongyi, XIAO Bolv, ZHANG Junfan, ZHU Shize, WANG Dong. Overview of Research and Development for Aluminum Matrix Composites Driven by Aerospace Equipment Demand[J]. 金属学报, 2023, 59(4): 457-466.
[14] WU Xinqiang, RONG Lijian, TAN Jibo, CHEN Shenghu, HU Xiaofeng, ZHANG Yangpeng, ZHANG Ziyu. Research Advance on Liquid Lead-Bismuth Eutectic Corrosion Resistant Si Enhanced Ferritic/Martensitic and Austenitic Stainless Steels[J]. 金属学报, 2023, 59(4): 502-512.
[15] LI Shujun, HOU Wentao, HAO Yulin, YANG Rui. Research Progress on the Mechanical Properties of the Biomedical Titanium Alloy Porous Structures Fabricated by 3D Printing Technique[J]. 金属学报, 2023, 59(4): 478-488.
No Suggested Reading articles found!