Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (6): 709-719    DOI: 10.11900/0412.1961.2018.00430
Current Issue | Archive | Adv Search |
Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy
Xu LI1,Qingbo YANG1,Xiangze FAN1,Yonglin GUO2,Lin LIN2,Zhiqing ZHANG1,3()
1. College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
2. Southwest Aluminum Group Co. , Ltd. , Chongqing 401326, China
3. Chongqing Xipeng Industrial Park, Chongqing 401326, China
Cite this article: 

Xu LI,Qingbo YANG,Xiangze FAN,Yonglin GUO,Lin LIN,Zhiqing ZHANG. Influence of Deformation Parameters on Dynamic Recrystallization of 2195 Al-Li Alloy. Acta Metall Sin, 2019, 55(6): 709-719.

Download:  HTML  PDF(34712KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Al-Li alloys have attracted extensive attentions as promising structural materials in aerospace industries due to their excellent mechanical properties, and are usually formed through a variety of hot workings such as rolling and forging. Dynamic recrystallization (DRX) is considered as one of the key microstructure evolutions of Al alloys during hot working, and many works have been done concerning with DRX. However, the influence of deformation parameters on different types of DRX of 2195 Al-Li alloy is still unclear. In this work, hot plane strain compression tests were conducted at the strain rate range from 0.01 s-1 to 1 s-1 and the temperature range from 350 ℃ to 500 ℃ to investigate the critical condition of dynamic recrystallization of 2195 Al-Li alloy under different hot deformation conditions, DRX mechanisms were discussed, and the influence of deformation parameters on different types of DRX was revealed using EBSD and TEM. The results showed that the critical strain decreased with the decrease of Zener-Hollomon parameter (Z), DRX was more sufficient in lower Z value, and discontinuous dynamic recrystallization (DDRX) was primary type while only a little continuous dynamic recrystallization (CDRX) was found. Both CDRX and DDRX were promoted in lower Z value, geometric dynamic recrystallization (GDRX) only occurred in high Z value and increased with further increase of Z value, and the appearance of GDRX was accompanied by the increase of the number of DRX grains so that the DRX fraction slightly increased.

Key words:  2195 Al-Li alloy      plane strain compression      deformation parameters      dynamic recrystallization     
Received:  11 September 2018     
ZTFLH:  TG146.2  
Fund: Fundamental Research Funds for the Central Universities(No.106112017CDJQJ328840)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00430     OR     https://www.ams.org.cn/EN/Y2019/V55/I6/709

Fig.1  Schematic of observing areas (RD, TD, ND represent rolling, transverse and normal directions, respectively; EBSD—electron backscatter diffraction; TEM—transmission electron microscope)
Fig.2  True stress-true strain curves of 2195 Al-Li alloy deformed at the strain rates of ε˙=0.01?s-1 (a), ε˙=0.1?s-1 (b) and ε˙=1?s-1 (c)
Fig.3  Curves of θ-σ (a~c) and (d2θ/dσ2)-σ (d) of 2195 Al-Li alloy (θ—work hardening rate, σ—stress, σc—critical stress, σs—saturation stress)
Fig.4  σc curves under different deformation parameters (a) and relationship of lnεc-lnZ (b) of 2195 Al-Li alloy (Z—Zener-Hollomon parameter, εc—critical strain)

Strain rate / s-1

Temperature / ℃
350400450500
0.0149.145.141.738.7
0.151.447.444.041.0
153.749.746.343.3
Table 1  lnZ values of 2195 Al-Li alloy under different deformation conditions
Fig.5  Electron backscatter diffraction (EBSD) images of 2195 Al-Li alloy deformed at different lnZ (CDRX—continuous dynamic recrystallization, GDRX—geometric dynamic recrystallization, DDRX—discontinuous dynamic recrystallization)
Fig.6  Boundary misorientation angle distribution histograms of Fig.5f(a) whole image (b) the zone between dotted lines
Fig.7  Volume fraction and average grain size of dynamic recrystallization
Fig.8  TEM images of 2195 Al-Li alloy deformed at different lnZ
Fig.9  High resolution TEM image of T1 phase
[1] Dursun T, Soutis C. Recent developments in advanced aircraft aluminium alloys [J]. Mater. Des., 2014, 56: 862
[2] Zheng Z Q, Li J F, Chen Z G, et al. Alloying and microstructural evolution of Al-Li alloys [J]. Chin. J. Nonferrous Met., 2011, 21: 2337
[2] (郑子樵, 李劲风, 陈志国等. 铝锂合金的合金化与微观组织演化 [J]. 中国有色金属学报, 2011, 21: 2337)
[3] Jiang N, Li J F, Zheng Z Q, et al. Simulation on flow stress of multi-pass hot deformation of 2195 Al-Li alloy [J]. Rare Met. Mater. Eng., 2007, 36: 949
[3] (蒋 呐, 李劲风, 郑子樵等. 2195铝锂合金多道次热变形流变应力的模拟研究 [J]. 稀有金属材料与工程, 2007, 36: 949)
[4] Williams J C, Starke E A Jr. Progress in structural materials for aerospace systems [J]. Acta Mater., 2003, 51: 5775
[5] Nayan N, Murty S V S N, Chhangani S, et al. Effect of temperature and strain rate on hot deformation behavior and microstructure of Al-Cu-Li alloy [J]. J. Alloys Compd., 2017, 723: 548
[6] Zhu R H, Liu Q, Li J F, et al. Dynamic restoration mechanism and physically based constitutive model of 2050 Al-Li alloy during hot compression [J]. J. Alloys Compd., 2015, 650: 75
[7] Han D F, Zheng Z Q, Jiang N, et al. Flow stress of high-strength weldable 2195 aluminium-lithium alloy during hot compression deformation [J]. Chin. J. Nonferrous Met., 2004, 14: 2090
[7] (韩冬峰, 郑子樵, 蒋 呐等. 高强可焊2195铝-锂合金热压缩变形的流变应力 [J]. 中国有色金属学报, 2004, 14: 2090)
[8] Shen B, Deng L, Wang X Y. A new dynamic recrystallisation model of an extruded Al-Cu-Li alloy during high-temperature deformation [J]. Mater. Sci. Eng., 2015, A625: 288
[9] Li Y P, Onodera E, Matsumoto H, et al. Correcting the stress-strain curve in hot compression process to high strain level [J]. Metall. Mater. Trans., 2009, 40A: 1255
[10] Pan H B, Tang D, Hu S P, et al. Study on plane strain physical compression technology [J]. Forg. Stamp. Technol., 2008, 33(2): 75
[10] (潘红波, 唐 荻, 胡水平等. 平面应变压缩技术的研究 [J]. 锻压技术, 2008, 33(2): 75)
[11] Liu J, Cui Z, Ruan L. A new kinetics model of dynamic recrystallization for magnesium alloy AZ31B [J]. Mater. Sci. Eng., 2011, A529: 300
[12] Li H Y, Ou L, Zheng Z Q. Study on the anisotropy of 2195 Al-Li alloy [J]. J. Mater. Eng., 2005, (10): 31
[12] (李红英, 欧 玲, 郑子樵. 2195铝锂合金的各向异性研究 [J]. 材料工程, 2005, (10): 31)
[13] Rioja R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Mater. Sci. Eng., 1998, A257: 100
[14] Sakai T, Belyakov A, Kaibyshev R, et al. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions [J]. Prog. Mater. Sci., 2014, 60: 130
[15] Sun Z C, Zheng L S, Yang H. Softening mechanism and microstructure evolution of as-extruded 7075 aluminum alloy during hot deformation [J]. Mater. Charact., 2014, 90: 71
[16] Yang Q B, Wang X Z, Li X, et al. Hot deformation behavior and microstructure of AA2195 alloy under plane strain compression [J]. Mater. Charact., 2017, 131: 500
[17] Yang Q Y, Deng Z H, Zhang Z Q, et al. Effects of strain rate on flow stress behavior and dynamic recrystallization mechanism of Al-Zn-Mg-Cu aluminum alloy during hot deformation [J]. Mater. Sci. Eng., 2016, A662: 204
[18] Yang X S, Chai L J, Huang W J, et al. EBSD analysis on restoration mechanism of as-extruded AA2099 Al-Li alloy after various thermomechanical processes [J]. Mater. Chem. Phys., 2017, 191: 99
[19] Yang S L, Shen J, Yan X D, et al. Dynamic recrystallization kinetics and nucleation mechanism of Al-Cu-Li alloy based on flow behavior [J]. Chin. J. Nonferrous Met., 2016, 26: 365
[19] (杨胜利, 沈 健, 闫晓东等. 基于Al-Cu-Li合金流变行为的动态再结晶动力学与形核机制 [J]. 中国有色金属学报, 2016, 26: 365)
[20] Chen X H, Chen K H, Dong P X, et al. Microstructure evolution and dynamic recrystallization model of 7085 aluminum alloy during hot deformation [J]. Chin. J. Nonferrous Met., 2013, 23: 44
[20] (陈学海, 陈康华, 董朋轩等. 7085铝合金的热变形组织演变及动态再结晶模型 [J]. 中国有色金属学报, 2013, 23: 44)
[21] Xiang S, Liu D Y, Zhu R H, et al. Hot deformation behavior and microstructure evolution of 1460 Al-Li alloy [J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 3855
[22] Yin H, Li H Y, Su X J, et al. Processing maps and microstructural evolution of isothermal compressed Al-Cu-Li alloy [J]. Mater. Sci. Eng., 2013, A586: 115
[23] Huang K, Logé R E. A review of dynamic recrystallization phenomena in metallic materials [J]. Mater. Des., 2016, 111: 548
[24] Kumar S, Pink E. Serrated flow in aluminium alloys containing lithium [J]. Acta Mater., 1997, 45: 5295
[25] Poliak E I, Jonas J J. Initiation of dynamic recrystallization in constant strain rate hot deformation [J]. ISIJ Int., 2007, 43: 684
[26] Jonas J J, Quelennec X, Jiang L, et al. The Avrami kinetics of dynamic recrystallization [J]. Acta Mater., 2009, 57: 2748
[27] Zener C, Hollomon J H. Effect of strain rate upon plastic flow of steel [J]. J. Appl. Phys., 1944, 15: 22
[28] Sellars C M, McTegart W J. On the mechanism of hot deformation [J]. Acta Metall., 1966, 14: 1136
[29] Li X, Fan X Z, Yang Q B, et al. Flow behavior and microstructure of 2195 Al-Li alloy during plane strain compression [J]. Chin. J. Nonferrous Met., 2018, 28: 1980
[29] (李 旭, 樊祥泽, 杨庆波等. 2195铝锂合金平面应变压缩的流变行为与微观组织 [J]. 中国有色金属学报, 2018, 28: 1980)
[30] Liu J, Li J Q, Cui Z S, et al. A new one-parameter kinetics model of dynamic recrystallization and grain size predication [J]. Acta Metall. Sin., 2012, 48: 1510
[30] (刘 娟, 李居强, 崔振山等. 新的单参数动态再结晶动力学建模及晶粒尺寸预测 [J]. 金属学报, 2012, 48: 1510)
[31] Murty S V S N, Sarkar A, Narayanan P R, et al. Microstructure and micro-texture evolution during large strain deformation of aluminium alloy AA 2219 [J]. Mater. Sci. Eng., 2016, A677: 41
[32] Kapoor R, Shekhawat S K, Samajdar I. Flow localization in an Al-2.5Mg alloy after severe plastic deformation [J]. Mater. Sci. Eng., 2014, A611: 114
[33] Gourdet S, Montheillet F. An experimental study of the recrystallization mechanism during hot deformation of aluminium [J]. Mater. Sci. Eng., 2000, A283: 274
[34] Kassner M E, Barrabes S R. New developments in geometric dynamic recrystallization [J]. Mater. Sci. Eng., 2005, A410-411: 152
[35] Blum W, Zhu Q, Merkel R, et al. Geometric dynamic recrystallization in hot torsion of Al-5Mg-0.6Mn (AA5083) [J]. Mater. Sci. Eng., 1996, A205: 23
[36] Henshall G A, Kassner M E, McQueen H J. Dynamic restoration mechanisms in Al-5.8 at. pct Mg deformed to large strains in the solute drag regime [J]. Metall. Trans., 1992, 23A: 881
[37] Kassner M E. Large-strain deformation of aluminum single crystals at elevated temperature as a test of the geometric-dynamic-recrystallization concept [J]. Metall. Trans., 1989, 20A: 2182
[38] Cram D G, Zurob H S, Brechet Y J M, et al. Modelling discontinuous dynamic recrystallization using a physically based model for nucleation [J]. Acta Mater., 2009, 57: 5218
[39] McQueen H J. Development of dynamic recrystallization theory [J]. Mater. Sci. Eng., 2004, A387-389: 203
[40] Gourdet S, Montheillet F. A model of continuous dynamic recrystallization [J]. Acta Mater., 2003, 51: 2685
[41] Jazaeri H, Humphreys F J. The transition from discontinuous to continuous recrystallization in some aluminium alloys: II—Annealing behaviour [J]. Acta Mater., 2004, 52: 3251
[42] Liu W Y, Zhao H, Li D, et al. Hot deformation behavior of AA7085 aluminum alloy during isothermal compression at elevated temperature [J]. Mater. Sci. Eng., 2015, A596: 176
[43] Wu B, Li M Q, Ma D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Mater. Sci. Eng., 2012, A542: 79
[44] Yan J, Pan Q L, Li B, et al. Research on the hot deformation behavior of Al-6.2Zn-0.70Mg-0.3Mn-0.17Zr alloy using processing map [J]. J. Alloys Compd., 2015, 632: 549
[45] Mao B P, Yan X D, Shen J. Precipitation behavior of T1 phase during thermo-mechanical treatment of 2197 Al-Li alloy [J]. Chin. J. Nonferrous Met., 2015, 25: 2366
[45] (毛柏平, 闫晓东, 沈 健. 2197铝锂合金形变热处理中T1相的析出行为 [J]. 中国有色金属学报, 2015, 25: 2366)
[46] Robson J D, Henry D T, Davis B. Particle effects on recrystallization in magnesium-manganese alloys: Particle-stimulated nucleation [J]. Acta Mater., 2009, 57: 2739
[1] LI Fulin, FU Rui, BAI Yunrui, MENG Lingchao, TAN Haibing, ZHONG Yan, TIAN Wei, DU Jinhui, TIAN Zhiling. Effects of Initial Grain Size and Strengthening Phase on Thermal Deformation and Recrystallization Behavior of GH4096 Superalloy[J]. 金属学报, 2023, 59(7): 855-870.
[2] LOU Feng, LIU Ke, LIU Jinxue, DONG Hanwu, LI Shubo, DU Wenbo. Microstructures and Formability of the As-Rolled Mg- xZn-0.5Er Alloy Sheets at Room Temperature[J]. 金属学报, 2023, 59(11): 1439-1447.
[3] WU Caihong, FENG Di, ZANG Qianhao, FAN Shichun, ZHANG Hao, LEE Yunsoo. Microstructure Evolution and Recrystallization Behavior During Hot Deformation of Spray Formed AlSiCuMg Alloy[J]. 金属学报, 2022, 58(7): 932-942.
[4] REN Shaofei, ZHANG Jianyang, ZHANG Xinfang, SUN Mingyue, XU Bin, CUI Chuanyong. Evolution of Interfacial Microstructure of Ni-Co Base Superalloy During Plastic Deformation Bonding and Its Bonding Mechanism[J]. 金属学报, 2022, 58(2): 129-140.
[5] JIANG Weining, WU Xiaolong, YANG Ping, GU Xinfu, XIE Qingge. Formation of Dynamic Recrystallization Zone and Characteristics of Shear Texture in Surface Layer of Hot-Rolled Silicon Steel[J]. 金属学报, 2022, 58(12): 1545-1556.
[6] NI Ke, YANG Yinhui, CAO Jianchun, WANG Liuhang, LIU Zehui, QIAN Hao. Softening Behavior of 18.7Cr-1.0Ni-5.8Mn-0.2N Low Nickel-Type Duplex Stainless Steel During Hot Compression Deformation Under Large Strain[J]. 金属学报, 2021, 57(2): 224-236.
[7] CHEN Wenxiong, HU Baojia, JIA Chunni, ZHENG Chengwu, LI Dianzhong. Post-Dynamic Softening of Austenite in a Ni-30%Fe Model Alloy After Hot Deformation[J]. 金属学报, 2020, 56(6): 874-884.
[8] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[9] WU Huajian, CHENG Renshan, LI Jingren, XIE Dongsheng, SONG Kai, PAN Hucheng, QIN Gaowu. Effect of Al Content on Microstructure and Mechanical Properties of Mg-Sn-Ca Alloy[J]. 金属学报, 2020, 56(10): 1423-1432.
[10] ZHANG Yong, LI Xinxu, WEI Kang, WAN Zhipeng, JIA Chonglin, WANG Tao, LI Zhao, SUN Yu, LIANG Hongyan. Hot Deformation Characteristics of Novel Wrought Superalloy GH4975 Extruded Rod Used for 850 ℃ Turbine Disc[J]. 金属学报, 2020, 56(10): 1401-1410.
[11] Yahui DENG,Yinhui YANG,Jianchun CAO,Hao QIAN. Research on Dynamic Recrystallization Behavior of 23Cr-2.2Ni-6.3Mn-0.26N Low Nickel TypeDuplex Stainless Steel[J]. 金属学报, 2019, 55(4): 445-456.
[12] Xiting ZHONG, Lei WANG, Feng LIU. Study on Formation Mechanism of Necklace Structure in Discontinuous Dynamic Recrystallization of Incoloy 028[J]. 金属学报, 2018, 54(7): 969-980.
[13] Yusen SU, Yinhui YANG, Jianchun CAO, Yuliang BAI. Research on Hot Working Behavior of Low-NickelDuplex Stainless Steel 2101[J]. 金属学报, 2018, 54(4): 485-493.
[14] Tao WANG, Zhipeng WAN, Yu SUN, Zhao LI, Yong ZHANG, Lianxi HU. Dynamic Softening Behavior and Microstructure Evolution of Nickel Base Superalloy[J]. 金属学报, 2018, 54(1): 83-92.
[15] Yun CAI,Chaoyang SUN,Li WAN,Daijun YANG,Qingjun ZHOU,Zexing SU. STUDY ON THE DYNAMIC RECRYSTALLIZATION SOFTENING BEHAVIOR OF AZ80 MAGNESIUM ALLOY[J]. 金属学报, 2016, 52(9): 1123-1132.
No Suggested Reading articles found!