Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (3): 389-398    DOI: 10.11900/0412.1961.2018.00399
Current Issue | Archive | Adv Search |
Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys
Yaohong LIU,Zhaohui WANG(),Ke LIU,Shubo LI,Wenbo DU
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
Cite this article: 

Yaohong LIU,Zhaohui WANG,Ke LIU,Shubo LI,Wenbo DU. Effects of Er on Hot Cracking Susceptibility of Mg-5Zn-xEr Magnesium Alloys. Acta Metall Sin, 2019, 55(3): 389-398.

Download:  HTML  PDF(11584KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Mg-Zn-Er casting magnesium alloys have good properties, such as high specific strength, high specific stiffness and remarkable temperature creep properties. Current researches mainly focused on the phases and mechanical properties at room and high temperatures. However, the effect of Er on hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys was barely studied. In this work, a modified RDG (Rappaz-Drezet-Gremaud) model for predicting the hot cracking susceptibility of Mg-5Zn-xEr (x=0.83, 1.25, 2.5, 5, mass fraction, %) ternary alloys was proposed, which considered the effects of phase and solidification temperature range on the hot cracking susceptibility of the multiphase alloys. And, the hot cracking susceptibility was evaluated by the experiment of constrained rod casting (CRC). The results indicated that the modified RDG model could accurately predict the hot cracking susceptibility of Mg-5Zn-xEr magnesium alloys. The hot cracking susceptibility increased with the addition of Er up to 2.5%, and Mg-5Zn-2.5Er alloy showed the maximal hot cracking susceptibility; when the addition of Er increased to 5.0%, Mg-5Zn-5Er alloy exhibited the minimal hot cracking susceptibility. The calculated results were consistent with the experimental ones. Further analysis on the casting solidification curves, phases and microstructures showed that I-phase precipitated by peritectic reaction during solidification of Mg-5Zn-2.5Er alloy depleted liquid phases and extended the solidification temperature range of the alloy, leading to the hot cracking susceptibility increasing. The Mg-5Zn-5Er alloy underwent eutectic reaction of L→α-Mg+W during solidification, which reduced the solidification temperature range. Meanwhile, this process was beneficial to feeding the interdendritic hot cracking in the terminal period of solidification, which significantly decreased the hot cracking susceptibility of Mg-5Zn-5Er alloy.

Key words:  RDG model      Mg-Zn-Er alloy      hot cracking susceptibility      microstructure     
Received:  30 August 2018     
ZTFLH:  TG146  
Fund: National Key Research and Development Program of China(2016YFB0301001);Natural Science Foundation of Beijing(2162003)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00399     OR     https://www.ams.org.cn/EN/Y2019/V55/I3/389

Alloy (Zn/Er ratio)ZnErMg
Mg-5Zn-0.83Er (6)5.310.71Bal.
Mg-5Zn-1.25Er (4)5.311.19Bal.
Mg-5Zn-2.5Er (2)5.322.36Bal.
Mg-5Zn-5Er (1)5.455.31Bal.
Table 1  Compositions of Mg-5Zn-xEr alloys (mass fraction / %)
Fig.1  Schematics of hot cracking susceptibility factors including rod length factor (a), crack location factor (b) and crack width factor (c)
Fig.2  Schematic of hot cracking susceptibility experimental device (unit: mm)
Fig.3  Solid phase volume fraction (fs)- solidification temperature (T) curves of Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5)
AlloyFitting function expressionR2

Mg-5Zn-0.83Er

Mg-5Zn-1.25Er

Mg-5Zn-2.5Er

Mg-5Zn-5Er

fs(T)=0.98886-3.854×10-12exp (0.042T)

fs(T)=0.971-3.09×10-9exp (0.031T)

fs(T)=0.9779-5.687×10-16exp (0.056T)

fs(T)=1.00089-9.178×10-10exp (0.033T)

0.987

0.969

0.991

0.978

Table 2  fs-T fitting function expression of Mg-5Zn-xEr alloys and correlation coefficients (R2) (x=0.83, 1.25, 2.5, 5)
Fig.4  Hot cracking susceptibilities predicted by optimized RDG model in this work (HCSTco-T0) (a) and optimized RDG model of Easton (Sht) (b) of Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5. fs,n―solid phase volume fraction corresponding to the coherency (fs,0) and coalescence (fs,co) points)
Fig.5  Hot cracking image of Mg-5Zn-0.83Er alloy (Arrows in Fig.5a show the macro-cracks) (a) and hot cracking susceptibilities of Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5) (b) (Experiment via critical size method)
Fig.6  XRD spectra of Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5)
Fig.7  SEM images (a, b, d, e) and EDS spectra of points A (c) and B (f) of Mg-5Zn-xEr alloys with x=0.83 (a, c), x=1.25 (b), x=2.5 (d) and x=5 (e, f)
Fig.8  Solidification curves of Mg-5Zn-xEr alloys (Experiment via critical size method)(a) x=0.83 (b) x=1.25 (c) x=2.5 (d) x=5
Alloyα-MgW-phaseI-phaseΔT
Mg-5Zn-0.83Er616.4-438.7177.7
Mg-5Zn-1.25Er613.7566.6425.1188.6
Mg-5Zn-2.5Er615.3544.9419.8195.5
Mg-5Zn-5Er593.4532.1-61.3
Table 3  Precipitation temperatures of various phases and solidification temperature range (ΔT) for Mg-5Zn-xEr alloys (x=0.83, 1.25, 2.5, 5. Experiment via critical size method) (℃)
Fig.9  Hot cracking fracture morphologies of Mg-5Zn-xEr alloys (longitudinal section)(a) x=0.83 (b) x=1.25 (c) x=2.5 (d) x=5
Fig.10  Hot cracking fracture morphologies of Mg-5Zn-xEr alloys (top view)(a) x=0.83 (b) x=1.25 (c) x=2.5 (d) x=5
[1] Song J, Xiong S M. The correlation between as-cast and aged microstructures of high-vacuum die-cast Mg-9Al-1Zn magnesium alloy [J]. J. Alloys Compd., 2011, 509: 1866
[2] Wang B J, Xu D K, Wang S D, et al. Influence of solution treatment on the corrosion fatigue behavior of an as-forged Mg-Zn-Y-Zr alloy [J]. Int. J. Fatigue, 2019, 120: 46
[3] Pan F S, Yang M B, Chen X H. A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys [J]. J. Mater. Sci. Technol., 2016, 32: 1211
[4] Nasr Esfahani M R, Niroumand B. Study of hot tearing of A206 aluminum alloy using instrumented constrained T-shaped casting method [J]. Mater. Charact., 2010, 61: 318
[5] Liu J W, Kou S D. Susceptibility of ternary aluminum alloys to cracking during solidification [J]. Acta Mater., 2017, 125: 513
[6] Wang Z, Li Y Z, Wang F, et al. Hot tearing susceptibility of Mg-xZn-2Y alloys [J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 3115
[7] Shin J, Kim T, Kim D E, et al. Castability and mechanical properties of new 7xxx aluminum alloys for automotive chassis/body applications [J]. J. Alloys Compd., 2017, 698: 577
[8] Huang H, Fu P H, Wang Y X, et al. Effect of pouring and mold temperatures on hot tearing susceptibility of AZ91D and Mg-3Nd-0.2Zn-Zr Mg alloys [J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 922
[9] Stangeland A, Mo A, M' Hamdi M, et al. Thermal strain in the mushy zone related to hot tearing [J]. Metall. Mater. Trans., 2006, 37A: 705
[10] Easton M A, Wang H, Grandfield J, et al. Observation and prediction of the hot tear susceptibility of ternary Al-Si-Mg alloys [J]. Metall. Mater. Trans., 2012, 43A: 3227
[11] Eskin D G, Suyitno, Katgerman L. Mechanical properties in the semi-solid state and hot tearing of aluminium alloys [J]. Prog. Mater. Sci., 2004, 49: 629
[12] Lahaie D J, Bouchard M. Physical modeling of the deformation mechanisms of semisolid bodies and a mechanical criterion for hot tearing [J]. Metall. Mater. Trans., 2001, 32B: 697
[13] Suyitno, Kool W H, Katgerman L. Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy [J]. Metall. Mater. Trans., 2005, 36A: 1537
[14] Rappaz M, Drezet J M, Gremaud M. A new hot-tearing criterion [J]. Metall. Mater. Trans., 1999, 30A: 449
[15] Suyitno, Kool W H, Katgerman L. Integrated approach for prediction of hot tearing [J]. Metall. Mater. Trans., 2009, 40A: 2388
[16] Kou S D. A criterion for cracking during solidification [J]. Acta Mater., 2015, 88: 366
[17] Srinivasan A, Huang Y, Mendis C L, et al. Investigations on microstructures, mechanical and corrosion properties of Mg-Gd-Zn alloys [J]. Mater. Sci. Eng., 2014, A595: 224
[18] Luo Z P, Zhang S Q, Tang Y L, et al. Quasicrystals in as-cast Mg-Zn-RE alloys [J]. Scr. Metall. Mater., 1993, 28: 1513
[19] Bae D H, Kim S H, Kim D H, et al. Deformation behavior of Mg-Zn-Y alloys reinforced by icosahedral quasicrystalline particles [J]. Acta Mater., 2002, 50: 2343
[20] Luo Z P, Zhang S Q. Comment on the so-called Z-phase in magnesium alloys containing zinc and rare-earth elements [J]. J. Mater. Sci. Lett., 1993, 12: 1490
[21] Liu K, Wang Q F, Du W B, et al. Failure mechanism of as-cast Mg-6Zn-2Er alloy during tensile test at room temperature [J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 3193
[22] Lee J Y, Kim D H, Lim H K, et al. Effects of Zn/Y ratio on microstructure and mechanical properties of Mg-Zn-Y alloys [J]. Mater. Lett., 2005, 59: 3801
[23] Li H, Du W B, Li S B, et al. Effect of Zn/Er weight ratio on phase formation and mechanical properties of as-cast Mg-Zn-Er alloys [J]. Mater. Des., 2012, 35: 259
[24] Li H, Du W B, Li J H, et al. Creep properties and controlled creep mechanism of as-cast Mg-5Zn-2.5Er alloy [J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 1212
[25] Wei Z Q, Liu Z, Wang Z, et al. Effects of Y on hot tearing susceptibility of Mg-Zn-Y-Zr alloys [J]. Chin. J. Nonferrous Met., 2018, 28: 233
[25] 魏子淇, 刘 正, 王 志等. 钇对Mg-Zn-Y-Zr合金热裂敏感性影响 [J]. 中国有色金属学报, 2018, 28: 233
[26] Liu Z, Zhang S B, Mao P L, et al. Effects of Y on hot tearing formation mechanism of Mg-Zn-Y-Zr alloys [J]. Mater. Sci. Technol., 2014, 30: 1214
[27] Wang Z, Song J F, Huang Y D, et al. An investigation on hot tearing of Mg-4.5Zn-(0.5Zr) alloys with Y additions [J]. Metall. Mater. Trans., 2015, 46A: 2108
[28] Gunde P, Schiffl A, Uggowitzer P J. Influence of yttrium additions on the hot tearing susceptibility of magnesium-zinc alloys [J]. Mater. Sci. Eng., 2010, A527: 7074
[29] Xu R F. Study on hot tearing formation in hypoeutectic Al-Si alloys [D]. Jinan: Shandong University, 2014
[29] 许荣福. 亚共晶Al-Si合金热裂形成过程的研究 [D]. 济南: 山东大学, 2014
[30] Song J F, Pan F S, Jiang B, et al. A review on hot tearing of magnesium alloys [J]. J. Magn. Alloys, 2016, 4: 151
[31] Zhou Y, Mao P L, Wang Z, et al. Investigations on hot tearing behavior of Mg-7Zn-xCu-0.6Zr alloys [J]. Acta Metall. Sin., 2017, 53: 851
[31] 周 野, 毛萍莉, 王 志等. Mg-7Zn-xCu-0.6Zr合金热裂行为的研究 [J]. 金属学报, 2017, 53: 851
[32] Zhang S B. Investigations on testing methods and hot tearing susceptibility of Mg-Zn-Y alloys [D]. Shenyang: Shenyang University of Technology, 2014
[32] 张斯博. Mg-Zn-Y合金热裂行为测试研究 [D]. 沈阳: 沈阳工业大学, 2014
[33] Cao G, Kou S. Hot tearing of ternary Mg-Al-Ca alloy castings [J]. Metall. Mater. Trans., 2006, 37A: 3647
[34] Easton M A, Gibson M A, Zhu S M, et al. An a priori hot-tearing indicator applied to die-cast magnesium-rare earth alloys [J]. Metall. Mater. Trans., 2014, 45A: 3586
[35] Farup I, Mo A. Two-phase modeling of mushy zone parameters associated with hot tearing [J]. Metall. Mater. Trans., 2000, 31A: 1461
[36] Ludwig O, Drezet J M, Martin C L, et al. Rheological behavior of Al-Cu alloys during solidification: Constitutive modeling, experimental identification, and numerical study [J]. Metall. Mater. Trans., 2005, 36A: 1525
[37] Clyne T W, Davies G J. The influence of composition on solidification cracking susceptibility in binary alloys systems [J]. Br. Foundrymen, 1981, 74: 65
[38] Vernède S, Jarry P, Rappaz M. A granular model of equiaxed mushy zones: Formation of a coherent solid and localization of feeding [J]. Acta Mater., 2006, 54: 4023
[39] Vernède S, Dantzig J A, Rappaz M. A mesoscale granular model for the mechanical behavior of alloys during solidification [J]. Acta Mater., 2009, 57: 1554
[40] Li H. Research on composition range for icosahedral quasicrystalline phase and mechanical properties of as-cast Mg-Zn-Er alloys [D]. Beijing: Beijing University of Technology, 2011
[40] 李 晗. Mg-Zn-Er镁合金准晶相的形成规律及性能研究 [D]. 北京: 北京工业大学, 2011
[41] Li J H. Study on microstructure and mechanical properties of Mg-Zn-Er alloy reinforced by icosahedral quasicrystalline phase [D]. Beijing: Beijing University of Technology, 2010
[41] 李建辉. 准晶增强Mg-Zn-Er合金显微组织及性能的研究 [D]. 北京: 北京工业大学, 2010
[1] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[2] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[7] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] ZHANG Dongyang, ZHANG Jun, LI Shujun, REN Dechun, MA Yingjie, YANG Rui. Effect of Heat Treatment on Mechanical Properties of Porous Ti55531 Alloy Prepared by Selective Laser Melting[J]. 金属学报, 2023, 59(5): 647-656.
[15] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
No Suggested Reading articles found!