Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (11): 1586-1596    DOI: 10.11900/0412.1961.2018.00355
Materials and Processes Current Issue | Archive | Adv Search |
Progress in Interface Modification and Nanoscale Study of Diamond/Cu Composites
Di ZHANG, Mengying YUAN, Zhanqiu TAN(), Ding-Bang XIONG, Zhiqiang LI
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Cite this article: 

Di ZHANG, Mengying YUAN, Zhanqiu TAN, Ding-Bang XIONG, Zhiqiang LI. Progress in Interface Modification and Nanoscale Study of Diamond/Cu Composites. Acta Metall Sin, 2018, 54(11): 1586-1596.

Download:  HTML  PDF(1860KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to the superiority in high thermal conductivity, low thermal expansion and good resistance from heat and corrosion, diamond/Cu composites show great prospect in thermal management applications. However, the thermal properties of diamond/Cu composites are impeded by their interface incompatibility. Interface modification is an effective method to enhance interfacial bonding and reduce interfacial thermal resistance. Based on the principles and factors related with interface design, this paper briefly reviewed some hot topics in diamond/Cu composites, including the main research progress, issues remained to be solved and nanoscale interface design with layer thickness lower than 200 nm, and its prospect of the future development.

Key words:  diamond/Cu composite      thermal conductivity      interfacial thermal conductance      interface modification      surface metallization     
Received:  16 July 2018     
ZTFLH:  TB331  
Fund: Supported by National Key Research and Development Program of China (No.2017YFB0406200) and National Natural Science Foundation of China (No.51401123)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00355     OR     https://www.ams.org.cn/EN/Y2018/V54/I11/1586

Fig.1  Effect of interface modification on relative density (a) and thermal conductivity (b) of diamond/Cu
Element Solubility in Cu
(mass fraction / %)
Thermal conductivity
W·m-1·K-1
Thermal conductivity of carbide
W·m-1·K-1
W ~0 178 120
Mo 0.042 138 21
B 0.05 27.4 67
Zr 0.172 22.6 21
Cr 0.73 90 19
Si 5.4 126 179
Ti 6 22 17
Table 1  Parameters of materials used as interface layers[52]
Fig.2  The effect of dual-layer coating on densification of composites and diamond distribution
Fig.3  The effect of interface layer thickness on thermal conductivity of diamond/Cu (data from Refs.[5, 7, 9, 12, 16, 21, 25, 30, 32, 35, 50])
[1] Wei C L, Xu L, Zhang L B, et al.Research on the density of Cr coating diamond/copper composite material under microwave heating[J]. Min. Metall., 2016, 25(1): 31(卫陈龙, 许磊, 张利波等. 微波烧结镀铬金刚石/铜复合材料的致密度研究[J]. 矿冶, 2016, 25(1): 31)
[2] Long L.AlSiC metal matrix composites and its application in microelectronics packaging[J]. Electron. Packag., 2006, 6(6): 16(龙乐. 电子封装中的铝碳化硅及其应用[J]. 电子与封装, 2006, 6(6): 16)
[3] Slack G A.Nonmetallic crystals with high thermal conductivity[J]. J. Phys. Chem. Solids, 1973, 34: 321
[4] Xu Z H.Corrosion resistant metal materials X copper alloys[J]. Corros. Prot., 2001, 22: 458(徐增华. 金属耐蚀材料第十讲铜合金[J]. 腐蚀与防护, 2001, 22: 458)
[5] Ma S D, Zhao N Q, Shi C S, et al.Mo2C coating on diamond: Different effects on thermal conductivity of diamond/Al and diamond/Cu composites[J]. Appl. Surf. Sci., 2017, 402: 372
[6] Tan Z Q, Li Z Q, Fan G L, et al.Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer[J]. Mater. Des., 2013, 47: 160
[7] Abyzov A M, Kidalov S V, Shakhov F M.High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix[J]. J. Mater. Sci., 2011, 46: 1424
[8] Bai G Z, Li N, Wang X T, et al.High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration[J]. J. Alloys Compd., 2018, 735: 1648
[9] Ren S B, Shen X Y, Guo C Y, et al.Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy[J]. Compos. Sci. Technol., 2011, 71: 1550
[10] Dong Y H, Zhang R Q, He X B, et al.Fabrication and infiltration kinetics analysis of Ti-coated diamond/copper composites with near-net-shape by pressureless infiltration[J]. Mater. Sci. Eng., 2012, B177: 1524
[11] Chu K, Liu Z F, Jia C C, et al.Thermal conductivity of SPS consolidated Cu/diamond composites with Cr-coated diamond particles[J]. J. Alloys Compd., 2010, 490: 453
[12] Ciupiński ?, Kruszewski M J, Grzonka J, et al.Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications[J]. Mater. Des., 2017, 120: 170
[13] Zain-Ul-Abdein M, Ijaz H, Saleem W, et al. Finite element analysis of interfacial debonding in copper/diamond composites for thermal management applications[J]. Materials (Basel), 2017, 10: E739
[14] Mizuuchi K, Inoue K, Agari Y, et al.Effect of boron addition on the thermal properties of diamond-particle-dispersed Cu-matrix composites fabricated by SPS[J]. J. Mater. Sci. Chem. Eng., 2016, 4: 1
[15] Li J W, Zhang H L, Wang L H, et al.Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration[J]. Composites, 2016, 91A: 189
[16] Li J W, Wang X T, Qiao Y, et al.High thermal conductivity through interfacial layer optimization in diamond particles dispersed Zr-alloyed Cu matrix composites[J]. Scr. Mater., 2015, 109: 72
[17] Che Q L, Chen X K, Ji Y Q, et al.The influence of minor titanium addition on thermal properties of diamond/copper composites via in situ reactive sintering[J]. Mater. Sci. Semicond. Process., 2015, 30: 104
[18] Mańkowski P, Dominiak A, Domański R, et al.Thermal conductivity enhancement of copper-diamond composites by sintering with chromium additive[J]. J. Therm. Anal. Calorim., 2014, 116: 881
[19] Chung C Y, Lee M T, Tsai M Y, et al.High thermal conductive diamond/Cu-Ti composites fabricated by pressureless sintering technique[J]. Appl. Therm. Eng., 2014, 69: 208
[20] Sinha V, Spowart J E.Influence of interfacial carbide layer characteristics on thermal properties of copper-diamond composites[J]. J. Mater. Sci., 2013, 48: 1330
[21] Chu K, Jia C C, Guo H, et al.On the thermal conductivity of Cu-Zr/diamond composites[J]. Mater. Des., 2013, 45: 36
[22] Schubert T, Ciupiński ?, Zieliński W, et al.Interfacial characterization of Cu/diamond composites prepared by powder metallurgy for heat sink applications[J]. Scr. Mater., 2008, 58: 263
[23] Schubert T, Trindade B, Wei?g?rber T, et al.Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications[J]. Mater. Sci. Eng., 2008, A475: 39
[24] Weber L, Tavangar R.On the influence of active element content on the thermal conductivity and thermal expansion of Cu-X (X = Cr, B) diamond composites[J]. Scr. Mater., 2007, 57: 988
[25] Wang L H, Li J W, Che Z F, et al.Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites[J]. J. Alloys Compd., 2018, 749: 1098
[26] Sang J Q, Yang W L, Zhu J J, et al.Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment[J]. J. Alloys Compd., 2018, 740: 1060
[27] Pan Y P, He X B, Ren S B, et al.High thermal conductivity of diamond/copper composites produced with Cu-ZrC double-layer coated diamond particles[J]. J. Mater. Sci., 2018, 53: 8978
[28] Pan Y P, He X B, Ren S B, et al.Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique[J]. Vacuum, 2018, 153: 74
[29] Sun Y H, He L K, Zhang C, et al.Enhanced tensile strength and thermal conductivity in copper diamond composites with B4C coating[J]. Sci. Rep., 2017, 7: 10727
[30] Zhang C, Wang R C, Peng C Q, et al.Effects of tungsten coating layer on thermal conductivity of diamond-copper composites[J]. Rare Met. Mater. Eng., 2016, 45: 2692(张纯, 王日初, 彭超群等. 表面镀钨层对金刚石/铜复合材料热导率的影响[J]. 稀有金属材料与工程, 2016, 45: 2692)
[31] Li J W, Zhang H L, Zhang S M, et al.On the thermal conductivity of Cu/diamond composite of diamond particles with tungsten coating[J]. J. Funct. Mater., 2016, 47: 1034(李建伟, 张海龙, 张少明等. 金刚石表面镀钨对铜/金刚石复合材料热导率的影响[J]. 功能材料, 2016, 47: 1034)
[32] Zhang C, Wang R C, Cai Z Y, et al.Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing[J]. Surf. Coat. Technol., 2015, 277: 299
[33] Li J W, Zhang H L, Zhang Y, et al.Microstructure and thermal conductivity of Cu/diamond composites with Ti-coated diamond particles produced by gas pressure infiltration[J]. J. Alloys Compd., 2015, 647: 941
[34] Kang Q P, He X B, Ren S B, et al.Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles[J]. Mater. Charact., 2015, 105: 18
[35] Che Q L, Zhang J J, Chen X K, et al.Spark plasma sintering of titanium-coated diamond and copper-titanium powder to enhance thermal conductivity of diamond/copper composites[J]. Mater. Sci. Semicond. Process., 2015, 33: 67
[36] Abyzov A M, Kruszewski M J, Ciupiński ?, et al.Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering[J]. Mater. Des., 2015, 76: 97
[37] Wang H Y, Tian J.Thermal conductivity enhancement in Cu/diamond composites with surface-roughened diamonds[J]. Appl. Phys., 2014, 116A: 265
[38] Hu H B, Kong J.Improved thermal performance of diamond-copper composites with boron carbide coating[J]. J. Mater. Eng. Perform., 2014, 23: 651
[39] Zhu C X, Wang C, Lang J, et al.Si-coated diamond particles reinforced copper composites fabricated by spark plasma sintering process[J]. Mater. Manuf. Process., 2013, 28: 143
[40] Kang Q P, He X B, Ren S B, et al.Preparation of high thermal conductivity copper-diamond composites using molybdenum carbide-coated diamond particles[J]. J. Mater. Sci., 2013, 48: 6133
[41] Kang Q P, He X B, Ren S B, et al.Effect of molybdenum carbide intermediate layers on thermal properties of copper-diamond composites[J]. J. Alloys Compd., 2013, 576: 380
[42] Kang Q P, He X B, Ren S B, et al.Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications[J]. Appl. Therm. Eng., 2013, 60: 423
[43] Bai H, Ma N G, Lang J, et al.Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder[J]. Composites, 2013, 52B: 182
[44] Shen X Y, He X B, Ren S B, et al.Effect of molybdenum as interfacial element on the thermal conductivity of diamond/Cu composites[J]. J. Alloys Compd., 2012, 529: 134
[45] Zhang Y, Zhang H L, Wu J H, et al.Enhanced thermal conductivity in copper matrix composites reinforced with titanium-coated diamond particles[J]. Scr. Mater., 2011, 65: 1097
[46] Gan Z T, Ren S B, Shen X Y, et al.Research on diamond/Cu composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng. Powder Metall., 2010, 15: 59(淦作腾, 任淑彬, 沈晓宇等. 放电等离子烧结法制备金刚石/Cu复合材料[J]. 粉末冶金材料科学与工程, 2010, 15: 59)
[47] Chu K, Jia C C, Guo H, et al.Microstructure and thermal conductivity of Cu-B/diamond composites[J]. J. Compos. Mater., 2013, 47: 2945
[48] Cui W, Xu H, Chen J H, et al.Effect of sintering on the relative density of Cr-coated diamond/Cu composites prepared by spark plasma sintering[J]. Int. J. Miner. Metall. Mater., 2016, 23: 716
[49] Grzonka J, Kruszewski M J, Rosiński M, et al.Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route[J]. Mater. Charact., 2015, 99: 188
[50] Wang L H, Li J W, Catalano M, et al.Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer[J]. Composites, 2018, 113A: 76
[51] Zhang X M, Guo H, Yin F Z, et al.Influences of Cr element on interface structures and thermal properties of diamond/Cu composites[J]. Chin. J. Rare Met., 2010, 34: 221(张习敏, 郭宏, 尹法章等. Cr元素对Diamond/Cu复合材料界面结构及热导性能的影响[J]. 稀有金属, 2010, 34: 221)
[52] Yuan M Y, Tan Z Q, Fan G L, et al.Theoretical modelling for interface design and thermal conductivity prediction in diamond/Cu composites[J]. Diamond Relat. Mater., 2018, 81: 38
[53] He J S, Wang X T, Zhang Y, et al.Thermal conductivity of Cu-Zr/diamond composites produced by high temperature-high pressure method[J]. Composites, 2015, 68B: 22
[54] Galashov E N, Yusuf A A, Mandrik E M, et al.Preparation and thermo-physical parameters of diamond/W, Cu heat-conducting composite substrates[J]. Int. J. Adv. Manuf. Technol., 2016, 86: 475
[55] Neubauer E, Kladler G, Eisenmenger-Sittner C, et al.Interface design in copper-diamond composite by using PVD and CVD coated diamonds[J]. Adv. Mater. Res., 2008, 59: 214
[56] Raza K, Khalid F A.Optimization of sintering parameters for diamond-copper composites in conventional sintering and their thermal conductivity[J]. J. Alloys Compd., 2014, 615: 111
[57] Long T.The effect of constructing interface on microstructure and thermal conductivity of diamond/copper composites for thermal management [D]. Nanchang: Nanchang Hangkong University, 2014(龙涛. 热管理用金刚石/铜复合材料的界面构建及其组织与热导率研究 [D]. 南昌: 南昌航空大学, 2014)
[58] Chen G Q, Yang W S, Xin L, et al.Mechanical properties of Al matrix composite reinforced with diamond particles with W coatings prepared by the magnetron sputtering method[J]. J. Alloys Compd., 2018, 735: 777
[59] Hua Y C, Dong Y, Cao B Y.Monte Carlo simulation of phonon ballistic diffusive heat conduction in silicon nanofilm[J]. Acta Phys. Sin., 2013, 62: 244401(华钰超, 董源, 曹炳阳. 硅纳米薄膜中声子弹道扩散导热的蒙特卡罗模拟[J]. 物理学报, 2013, 62: 244401)
[60] Dong Y, Cao B Y, Guo Z Y.Ballistic-diffusive phonon transport and size induced anisotropy of thermal conductivity of silicon nanofilms[J]. Physica, 2015, 66E: 1
[61] Zhang W, Brongersma S H, Richard O, et al.Influence of the electron mean free path on the resistivity of thin metal films[J]. Microelectron. Eng., 2004, 76: 146
[62] Jin J S, Lee J S, Kwon O.Electron effective mean free path and thermal conductivity predictions of metallic thin films[J]. Appl. Phys. Lett., 2008, 92: 171910
[63] Sinha V, Gengler J J, Muratore C, et al.Effects of disorder state and interfacial layer on thermal transport in copper/diamond system[J]. J. Appl. Phys., 2015, 117: 074305
[64] Monachon C, Weber L.Thermal boundary conductance between refractory metal carbides and diamond[J]. Acta Mater., 2014, 73: 337
[65] Monachon C, Weber L.Influence of diamond surface termination on thermal boundary conductance between Al and diamond[J]. J. Appl. Phys., 2013, 113: 183504
[66] Weber L, Monachon C.Thermal boundary conductance of transition metals on diamond[J]. Emerg. Mater. Res., 2012, 1: 89
[67] Collins K C, Chen S, Chen G.Effects of surface chemistry on thermal conductance at aluminum-diamond interfaces[J]. Appl. Phys. Lett., 2010, 97: 083102
[68] Harkins W D.Energy relations of the surface of solids I. Surface energy of the diamond[J]. J. Chem. Phys., 1942, 10: 268
[69] Zhang H D, Zhang J J, Liu Y, et al.Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface[J]. Scr. Mater., 2018, 152: 84
[70] Che Z F, Li J W, Wang Q X, et al.The formation of atomic-level interfacial layer and its effect on thermal conductivity of W-coated diamond particles reinforced Al matrix composites[J]. Composites, 2018, 107A: 164
[71] Edtmaier C, Weber L, Tavangar R.Surface modification of diamonds in diamond/Al-matrix composite [A]. 1st International Conference on New Materials for Extreme Environments[C]. San Sebastian: Trans Tech Publications, 2008: 125
[72] Monje I E, Louis E, Molina J M.Interfacial nano-engineering in Al/diamond composites for thermal management by in situ diamond surface gas desorption[J]. Scr. Mater., 2016, 115: 159
[73] Yang W L, Sang J Q, Zhou L P, et al.Overcoming selective interfacial bonding and enhancing thermal conductivity of diamond/aluminum composite by an ion bombardment pretreatment[J]. Diam. Relat. Mater., 2018, 81: 127
[1] LI Dou, XU Changjiang, LI Xuguang, LI Shuangming, ZHONG Hong. Thermoelectric Properties of P-Type CeyFe3CoSb12 Thermoelectric Materials and Coatings Doped with La[J]. 金属学报, 2023, 59(2): 237-247.
[2] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[3] ZHOU Lijun, WEI Song, GUO Jingdong, SUN Fangyuan, WANG Xinwei, TANG Dawei. Investigations on the Thermal Conductivity of Micro-Scale Cu-Sn Intermetallic Compounds Using Femtosecond Laser Time-Domain Thermoreflectance System[J]. 金属学报, 2022, 58(12): 1645-1654.
[4] ZHAO Li-Dong, WANG Sining, XIAO Yu. Carrier Mobility Optimization in Thermoelectric Materials[J]. 金属学报, 2021, 57(9): 1171-1183.
[5] ZHOU Hongyu, RAN Minrui, LI Yaqiang, ZHANG Weidong, LIU Junyou, ZHENG Wenyue. Effect of Diamond Particle Size on the Thermal Properties of Diamond/Al Composites for Packaging Substrate[J]. 金属学报, 2021, 57(7): 937-947.
[6] CUI Yang, LI Shouhang, YING Tao, BAO Hua, ZENG Xiaoqin. Research on the Thermal Conductivity of Metals Based on First Principles[J]. 金属学报, 2021, 57(3): 375-384.
[7] ZHU Weiqiang, YU Muzhi, TANG Xu, CHEN Xiaoyang, XU Zhengbing, ZENG Jianmin. Effect of Er and Si on Thermal Conductivity and Latent Heat of Phase Transformation of Aluminum-Based Alloy[J]. 金属学报, 2020, 56(11): 1485-1494.
[8] Xiaoyun LIU,Wenguang WANG,Dong WANG,Bolv XIAO,Dingrui NI,Liqing CHEN,Zongyi MA. Effect of Graphite Flake Size on the Strength and Thermal Conductivity of Graphite Flakes/Al Composites[J]. 金属学报, 2017, 53(7): 869-878.
[9] XIANG Jianying CHEN Shuhai HUANG Jihua ZHAO Xingke ZHANG Hua. THERMAL SHOCK RESISTANCE OF La2(Zr0.7Ce0.3)2O7 THERMAL BARRIER COATING PREPARED BY ATMOSPHERIC PLASMA SPRAYING[J]. 金属学报, 2012, 48(8): 965-970.
[10] GAO Yufei MENG Qingyuan. MOLECULAR DYNAMICS SIMULATION ON THERMAL CONDUCTIVITY OF ONE DIMENISON NANOMATERIALS[J]. 金属学报, 2010, 46(10): 1244-1249.
[11] CAO Bingyang; ZHANG Qingguang; ZHANG Xing; TAKAHASHI Koji; IKUTA Tatsuya. GRAIN SIZE OF PLATINUM NANOFILMS FABRICATED BY EB-PVD AND ITS EFFECT ON THERMAL CONDUCTIVITY[J]. 金属学报, 2006, 42(11): 1207-1211 .
No Suggested Reading articles found!