Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (4): 427-435    DOI: 10.11900/0412.1961.2018.00250
Current Issue | Archive | Adv Search |
Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel
Chengming ZHENG,Qingchao TIAN()
State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai 200444, China
Cite this article: 

Chengming ZHENG, Qingchao TIAN. Effect of Alloy Elements on Oxidation Behavior of Piercing Plug Steel. Acta Metall Sin, 2019, 55(4): 427-435.

Download:  HTML  PDF(9845KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Piercing plug is a key deformation tool during manufacturing the seamless steel tubular product while oxidation is the most economical and practical method for the surface treatment of the piercing plug. The high-temperature oxidation behavior of piercing plug steel was investigated by employing the materials 20Cr2Ni3, 30Cr3NiMo2V and H13 under drop-feeding mixed H2O-C2H5OH atmosphere. A two-stage surface treatment process of first oxidation and then reduction reaction was designed by adjusting the volume ratio of alcohol to water, and thus a two-layer oxide scale structure where the external layer mainly containing FeO was obtained subsequently. Morphology, chemical composition and phase constituents of the oxide scale were studied by using SEM, EDS and XRD, while the microstructure and hardness distribution of decarburization layer were studied by using OM and microhardness tester. The results show that the thickness of external oxide scale decreases with the increase of chromium equivalent, while the thickness of the inner oxide scale keeps basically unchanged. In the process of high temperature oxidation, the vacancy in oxide scale accumulates into micro holes, where the volatile substances and gases were concentrated to elevate the internal pressure high enough that makes the oxide scale "protrude" outwards. The mass transfer in oxidation process varied for different alloy elements. Ni and Mo cannot be oxidized in the specific atmosphere at 950 ℃ according to the oxidation thermodynamics, but exist in elemental form. The oxidation of C determines the microstructure and mechanical properties of the decarburization layer, where the hardness curves of 20Cr2Ni3 and 30Cr3NiMo2V exhibit a characteristic of "double-platform", while the hardness of H13 increases first slowly, then rapidly, and then gradually flattens out. Finally, the material selection for piercing plug steel is suggested from the viewpoint of engineering application.

Key words:  piercing plug steel      oxidation morphology      decarburization layer      dynamic mass transfer      thermodynamics     
Received:  11 June 2018     
ZTFLH:  TG178  

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00250     OR     https://www.ams.org.cn/EN/Y2019/V55/I4/427

MaterialCSiMnCrNiMoVFe
20Cr2Ni30.200.701.502.002.60--Bal.
30Cr3Ni-Mo2V

0.30

0.20

0.40

3.00

0.90

2.00

0.50

Bal.

H130.400.801.005.500.101.551.30Bal.
Table1  The chemical compositions of experimental materials
Fig.1  Decarburization layers of three materials
Fig.2  
Fig.3  Cross-sectional oxidation morphologies of three materials (a~c) and magnifications of the interfaces between metal and oxide scale (d~f)(a, d) 20Cr2Ni3 (b, e) 30Cr3NiMo2V (c, f) H13
Fig.4  
Fig.5  Line scan spectra of the oxide scale of 20Cr2Ni3 (a), 30Cr3NiMo2V (b) and H13 (c)
Fig.6  Morphology of oxide scale showing transmission "venation" in H13 and its line scan spectra from I to II in the inner oxide scale (a) and bright white substance in the external oxide scale (b)
Fig.7  EDS analyses of oxide scale for point 3 in Fig.6b (a), point 1 in Fig.3d (b) and point 2 in Fig.3e (c)
Fig.8  
Fig.9  
ReactantC→COSi→SiO2Mn→MnOCr→Cr2O3Ni→NiOMo→MoO3V→V2O3Fe→FeO
H2O-43927-167544-111405-936195912083466-124066-15062
FeO-28865-152482-96342-785567418398529-109004-
Table 2  Standard Gibbs free energy (ΔG?) of different element oxides at the temperature of 950 ℃
Fig.10  Mechanism diagram of outer oxide scale gap formation
Fig.11  Magnification image of oxidation scale of H13 oxide scale
1 Cao J L, Li Q. Review of piercing plug surface oxide film [J]. Jiangxi Met., 2007, 27(3): 32
1 曹家龙, 李 琼. 穿孔顶头表面氧化膜概述 [J]. 江西冶金, 2007, 27(3): 32)
2 Wang B, Yi D Q, Wu B T, et al. Failure type analysis and studies on prolonging service life of piercer plug for seamless steel tube [J]. Mater. Rev., 2006, 20(6): 82
2 王 斌, 易丹青, 吴伯涛等. 无缝钢管穿孔顶头失效形式分析及提高使用寿命的研究进展 [J]. 材料导报, 2006, 20(6): 82)
3 Song J P, Zhang W J, Jing H. Formation techniques for surface oxide film of piercer plug [J]. Steel Pipe, 1994, (2): 10
3 宋箭平, 张维静, 敬 华. 穿孔顶头表面氧化膜制取方法 [J]. 钢管, 1994, (2): 10)
4 Shi M Y, Zhan F, Zhang C Y. Trial-manufacture of 15Cr2Ni3MoW steel piercing plugs for seamless pipe production [J]. J. Univ. Sci. Technol. Beijing, 2012, 34(suppl.1): 78
4 石满鹰, 詹 飞, 张程远. 15Cr2Ni3MoW钢穿孔顶头试制 [J]. 北京科技大学学报, 2012, 34(增刊1): 78)
5 Wang P, Huang Z Y, Wang G M. Study on oxidation process for piercing plug made of high-alloy steel [J]. Hot Work. Technol., 2010, 39(12): 106
5 王 萍, 黄贞益, 王光明. 高合金钢管穿孔顶头氧化工艺的研究 [J]. 热加工工艺, 2010, 39(12): 106)
6 Saunders S R J, Monteiro M, Rizzo F. The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review [J]. Prog. Mater. Sci., 2008, 53: 775
7 Zhang J J, Yi D Q, Wang B, et al. Study on preparation process of perforated head oxide film for 15Cr2Ni3MoW steel [J]. Hot Work. Technol., 2011, 40(18): 133
7 张金菊, 易丹青, 王 斌等. 15Cr2Ni3MoW钢管穿孔顶头氧化膜制备工艺的研究 [J]. 热加工工艺, 2011, 40(18): 133)
8 Osgerby S, Fry A T. The role of alloy composition on the steam oxidation resistance of 9-12%Cr Steels [J]. Mater. Sci. Forum., 2006, 522-523: 129
9 Sun Z. Study on high temperature oxidation layer under H2O-C2H5OH mixed drop-feeding atmosphere for plug steel [D]. Xi'an: Xi'an University of Technology, 2007
9 孙 铮. 顶头钢在水添加酒精滴注式气氛中高温氧化层的研究 [D]. 西安: 西安理工大学, 2007
10 Zhang J Y. Physcial Chemistry of Metallurgy [M]. Beijing: Metall Industry Press, 2004: 223
10 张家芸. 冶金物理化学 [M]. 北京: 冶金工业出版社, 2004: 223)
11 Ye D L, Hu J H. Practical Inorganic Thermodynamic Data Manual [M]. Beijing: Metall Industry Press, 2002: 1
11 叶大伦, 胡建华. 实用无机物热力学数据手册 [M]. 北京: 冶金工业出版社, 2002: 1)
12 Min Y A, Wu X C, Wang R, et al. Prediction and analysis on oxidation of H13 hot work steel [J]. J. Iron Steel Res. Int., 2006, 13: 44
13 Birks N, Meier G H, Pettit F S, translated by Xin L, Wang W. Introduction to the High-Temperature Oxidation of Metals [M]. 2nd Ed., Beijing: Higher Education Press, 2010: 15
13 (Birks N, Meier G H, Pettit F S著, 辛 丽, 王 文译. 金属高温氧化导论 [M]. 第2版. 北京: 高等教育出版社, 2010: 15)
14 Li M D, Ni J F, Wang C F, et al. Oxidation behavior of T92 steel in high-temperature water-vapor atmosphere [J]. Sur. Technol., 2014, 43(3): 10
14 李茂东, 倪进飞, 王彩福等. T92钢在高温水蒸气中的氧化行为 [J]. 表面技术, 2014, 43(3): 10)
15 Chen R Y, Yuen W Y D. A study of the scale structure of hot-rolled steel strip by simulated coiling and cooling [J]. Oxid. Met., 2000, 53: 539
16 Chen R Y, Yuen W Y D. Review of the high-temperature oxidation of iron and carbon steels in air or oxygen [J]. Oxid. Met., 2003, 59: 433
17 Wang C, Yu Y, Niu T, et al. Growth mechanism of oxidized film of X80 pipeline steel at high temperature [J]. J. Iron steel Res., 2016, 28(5): 57
17 王 畅, 于 洋, 牛 涛等. X80管线钢高温氧化膜的生长机理 [J]. 钢铁研究学报, 2016, 28(5): 57)
18 Wouters Y, Bamba G, Galerie A, et al. Oxygen and water vapour oxidation of 15Cr ferritic stainless steels with different silicon contents [J]. Mater. Sci. Forum, 2004, 461-464: 839
19 Opila E J. Variation of the oxidation rate of silicon carbide with water-vapor pressure [J]. J. Am. Ceram. Soc., 2010, 82: 625
20 Yang Y, Liu Z Y, Cao G Y, et al. Research on alloy elements high temperature oxidation character of low alloy steel [J]. Steel Roll., 2016, 33(6): 38
20 杨 奕, 刘振宇, 曹光明等. 低合金钢中合金元素高温氧化行为研究 [J]. 轧钢, 2016, 33(6): 38)
21 Han J K, Yan H, Huang Y, et al. Structural features of oxide scales on weathering steel and their influence on atmospheric corrosion [J]. Acta. Metall. Sin., 2017, 53: 163
21 韩军科, 严 红, 黄 耀等. 耐候钢表面氧化皮的结构特征及其对大气腐蚀行为的影响 [J]. 金属学报, 2017, 53: 163
22 Li T F. The role of metallic grain boundary in high temperature oxidation [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 180
22 李铁藩. 金属晶界在高温氧化中的作用 [J]. 中国腐蚀与防护学报, 2002, 22: 180
23 Hondros E D, Seah M P. Segregation to interfaces [J]. Inter. Met. Res., 1977, 22: 262
24 Dumbill S, Boothby R M, Williams T M. Grain boundary segregation in nimonic PE16 [J]. Mater. Sci. Technol., 1991, 7: 385
25 Tian Q C, Dong X P, Cui H C, et al. Characterization of the welded-joint of high-strength high-toughness seamless steel pipe under high-cycle fatigue condition [A]. Materials for Modern Technologies III (Proceedings of MST-S 2017, Chengdu) [C]. Switzerland: Trans. Tech. Publications, 2017, 896: 202
26 Lui Z C. Pearlite Transformation and Annealing [M]. Beijing: Chemical Industry Press, 2007: 26
26 刘宗昌. 珠光体转变与退火 [M]. 北京: 化学工业出版社, 2007: 26)
27 Gao J W, Zhao G, Xu Y W, et al. Analysis of surface decarburization of 75 Cr1 steel heating in furnace [J]. J. Iron steel Res., 2017, 29: 150
27 高建文, 赵 刚, 徐耀文等. 75Cr1钢加热炉内表面脱碳分析 [J]. 钢铁研究学报, 2017, 29: 150
28 Jiang C, Liu Y Z, Zhang C L, et al. Effects of Nb-V micro-alloying on surface decarburization of spring steel 60Si2MnA [J]. Hot Work. Technol., 2011, 40: 180
28 姜 超, 刘雅政, 张朝磊等. Nb-V微合金化对弹簧钢60Si2MnA表面脱碳的影响 [J]. 热加工工艺, 2011, 40: 180
29 Quadakkers W J, Ennis P J, Zurek J, et al. Steam oxidation of ferritic steels-laboratory test kinetic data [J]. Mater. High Temp., 2005, 22: 47
30 Shen J N, Zhou L J, Li T F. High-temperature oxidation of Fe-Cr alloys in wet oxygen [J]. Oxid. Met., 1997, 48: 347
31 Opila E J. Volatility of common protective oxides in high-temperature water vapor: Current understanding and unanswered questions [J]. Mater. Sci. Forum, 2004, 461-464: 765
32 Zhong X Y, Wu X Q, Han E H. The characteristic of oxide Scales on T91 tube after long-term service in an ultra-supercritical coal power plant [J]. J. Supercrit. Fluids, 2012, 72: 68
33 Hansson K, Tang J E, Halvarsson M, et al. The bene?cial effect of water vapour on the oxidation at 600 and 700℃ of a MoSi2-based composite [J]. J. Eur. Ceram. Soc., 2005, 25: 1
[1] ZHANG Yuexin, WANG Jujin, YANG Wen, ZHANG Lifeng. Effect of Cooling Rate on the Evolution of Nonmetallic Inclusions in a Pipeline Steel[J]. 金属学报, 2023, 59(12): 1603-1612.
[2] GAO Jianbao, LI Zhicheng, LIU Jia, ZHANG Jinliang, SONG Bo, ZHANG Lijun. Current Situation and Prospect of Computationally Assisted Design in High-Performance Additive Manufactured Aluminum Alloys: A Review[J]. 金属学报, 2023, 59(1): 87-105.
[3] LIU Feng, WANG Tianle. Precipitation Modeling via the Synergy of Thermodynamics and Kinetics[J]. 金属学报, 2021, 57(1): 55-70.
[4] WANG Zumin,ZHANG An,CHEN Yuanyuan,HUANG Yuan,WANG Jiangyong. Research Progress on Fundamentals and Applications of Metal-Induced Crystallization[J]. 金属学报, 2020, 56(1): 66-82.
[5] Liheng LIU,Chunshan CHE,Gang KONG,Jintang LU,Shuanghong ZHANG. DESTABILIZATION MECHANISM OF Fe-Al INHIBITION LAYER IN Zn-0.2%Al HOT-DIP GALVANIZING COATING AND RELATED THERMODYNAMIC EVALUATION[J]. 金属学报, 2016, 52(5): 614-624.
[6] Feng LIU, Kang WANG. DISCUSSIONS ON THE CORRELATION BETWEEN THERMODYNAMICS AND KINETICS DURING THE PHASE TRANSFORMATIONS IN THE TMCP OF LOW-ALLOY STEELS[J]. 金属学报, 2016, 52(10): 1326-1332.
[7] XIE Jun, YU Jinjiang, SUN Xiaofeng, JIN Tao, SUN Yuan. CARBIDE EVOLUTION BEHAVIOR OF K416B AS-CAST Ni-BASED SUPERALLOY WITH HIGH W CONTENT DURING HIGH TEMPERATURE CREEP[J]. 金属学报, 2015, 51(4): 458-464.
[8] WU Changjun, ZHU Chenlu, SU Xuping, LIU Ya, PENG Haoping, WANG Jianhua. THERMODYNAMICAL AND KINETIC INVESTIGA-TION OF FORMATION OF PERIODIC LAYERED STRUCTURE IN TiCu/Zn INTERFACE REACTION[J]. 金属学报, 2014, 50(8): 930-936.
[9] MA Ping, WU Erdong, LI Wuhui, SUN Kai, CHEN Dongfeng. MICROSTRUCTURES AND HYDROGEN STORAGE PROPERTIES OF Ti0.7Zr0.3(Cr1-xVx)2 ALLOYS[J]. 金属学报, 2014, 50(4): 454-462.
[10] WANG Bin, LIU Zhenyu, ZHOU Xiaoguang, WANG Guodong. CALCULATION OF TRANSFORMATION DRIVING FORCE FOR THE PRECIPITATION OF NANO-SCALED CEMENTITES IN THE HYPOEUTECTOID STEELS THROUGH ULTRA FAST COOLING[J]. 金属学报, 2013, 49(1): 26-34.
[11] LI Wuhui TIAN Baohong MA Ping WU Erdong. HYDROGEN STORAGE PROPERTIES OF ScMn2 ALLOY[J]. 金属学报, 2012, 48(7): 822-829.
[12] WU Chaofeng MA Mingxing WU Aiping LIU Wenjin ZHONG Minlin ZHANG Weiming ZHANG Hongjun. MORPHOLOGIC CHARACTERISTICS OF IN SITU SYNTHESIZED CARBIDE PARTICLES IN LASER CLADDED Fe-BASED COMPOSITE COATINGS[J]. 金属学报, 2009, 45(9): 1091-1098.
[13] PENG Ningqi TANG Guangbo LIU Zhengdong WU Xiuyue. MODIFICATION OF ZENER'S TWO--PARAMETER IN THE SUPERELEMENT MODEL FOR Fe--Σ Xi--C ALLOY SYSTEMS[J]. 金属学报, 2009, 45(3): 331-337.
[14] MA Yingche WANG Weidong CHEN Bo GAO Ming LIU Kui LI Yiyi. INTERFACE REACTION BETWEEN CERAMIC MOULDS AND Ti46Al1B AS--CAST VALVES[J]. 金属学报, 2009, 45(3): 369-373.
[15] XIE Yu ZHANG Yan CHEN Rongshi HAN Enhou. RELATIONSHIP OF COMPOSITIONS, PHASE CONSTITUENTS AND SOLIDIFICATION PATHS OF CASTING Mg-Al-Zn ALLOYS[J]. 金属学报, 2009, 45(11): 1396-1401.
No Suggested Reading articles found!