Please wait a minute...
Acta Metall Sin  2019, Vol. 55 Issue (4): 521-528    DOI: 10.11900/0412.1961.2018.00165
Current Issue | Archive | Adv Search |
TEM Analysis of Microstructure Evolution Process of Pure Tungsten Under High Pressure Torsion
Ping LI,Quan LIN,Yufeng ZHOU,Kemin XUE(),Yucheng WU
School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Cite this article: 

Ping LI, Quan LIN, Yufeng ZHOU, Kemin XUE, Yucheng WU. TEM Analysis of Microstructure Evolution Process of Pure Tungsten Under High Pressure Torsion. Acta Metall Sin, 2019, 55(4): 521-528.

Download:  HTML  PDF(27814KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Refractory metal tungsten has wide applications in many fields such as aerospace, national defense, military and nuclear industry due to its excellent comprehensive mechanical properties. As the demand for high-performance materials in the new era is increasing, existing materials cannot meet the performance requirements under extreme conditions. The high pressure torsion (HPT) process can produce severe shear deformation and densify the material effectively, leading to ultrafine-grain structure with non-equilibrium grain boundaries and having a significant effect on improving the overall performance of pure tungsten materials. HPT process is used to prepare an ultrafine-grain material with excellent comprehensive performance, which can broaden the application field of refractory metal tungsten and promote the engineering application of high-performance materials. The HPT experiment was carried out on commercial pure tungsten at a relatively low temperature, and the microstructure evolution during HPT processing at various turning numbers has been investigated by means of EBSD, TEM and HRTEM. It was found that with the strain increasing, the grains were refined significantly, dislocation density and the ratio of non-equilibrium grain boundary increased obviously. Moreover, it was transparent that the low angle grain boundary transform into high angle grain boundary during HPT processing. At the same time, the dislocation structure moved to grain boundary gradually so that there was no obvious defect in fined grains. When the equivalent strain increased to 5.5, the deformation mode of grains transformed from intracrystalline sliding to grain boundary sliding, because the size of some grains was close to the mean free path of dislocation.

Key words:  pure tungsten      high pressure torsion      microstructure      TEM analysis     
Received:  28 April 2018     
ZTFLH:  TG376.1  
Fund: National Natural Science Foundation of China(No.51675154);Program for New Century Excellent Talents in University(No.NCET-13-0765);International Thermonuclear Experimental Reactor Project(No.2014GB121000)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2018.00165     OR     https://www.ams.org.cn/EN/Y2019/V55/I4/521

Fig.1  Schematic (a) and specimen (b) of high pressure torsion (HPT) processing for tungsten
Fig.2  TEM images showing the microstructures of grains (a, c, e) and grain boundaries (b, d, f) of pure tungsten processed by HPT under 1 turn (a, b), 2 turns (c, d) and 5 turns (e, f) (Insets in Figs.2a, c and e show the SAED patterns of grains)
Fig.3  EBSD images showing the evolution of grain boundary angles of pure tungsten before (a) and after HPT under 1 turn (b), 2 turns (c) and 5 turns (d)
Fig.4  Grain boundary morphologies of pure tungsten processed by HPT under 1 turn (a~c), 2 turns (d~f) and 5 turns (g~i)
Fig.5  
Fig.6  
Fig.7  HRTEM images of tungsten grain inside and boundary processed by HPT(a~c) grain A inside, grain B inside and grain boundary under 1 turn, respectively(d~f) grain C inside, grain D inside and grain boundary under 2 turns, respectively(g~i) grain E inside, grain F inside and grain boundary under 5 turns, respectively
1 Mishra A. Corrosion study of base material and welds of a Ni-Cr-Mo-W alloy [J]. Acta Metall. Sin. (Eng. Lett.), 2017, 30: 326
2 Lv C C, Liu J X, Li S K, et al. Penetration performance of W-Ni-Fe alloy shaped charge liner [J]. Rare Met. Mater. Eng., 2013, 42: 2337
2 吕翠翠, 刘金旭, 李树奎等. W-Ni-Fe合金药型罩的破甲特性 [J]. 稀有金属材料与工程, 2013, 42: 2337
3 Roth J, Tsitrone E, Loarte A, et al. Recent analysis of key plasma wall interactions issues for ITER [J]. J. Nucl. Mater., 2009, 390-391: 1
4 Zhang P, Zhu Q, Qin H Y, et al. Research progress of high temperature materials for aero-engines [J]. Mater. Rev., 2014, 28(6): 27
4 张 鹏, 朱 强, 秦鹤勇等. 航空发动机用耐高温材料的研究进展 [J]. 材料导报, 2014, 28(6): 27)
5 Zhu L X, Yan Q Z, Lang S T, et al. Research progress of tungsten-base materials as plasma facing materials [J]. Chin. J. Nonferrous Met., 2012, 22: 3522
5 朱玲旭, 燕青芝, 郎少庭等. 钨基面向等离子体材料的研究进展 [J]. 中国有色金属学报, 2012, 22: 3522
6 Wu Y C. The routes and mechanism of plasma facing tungsten materials to improve ductility [J]. Acta Metall. Sin., 2019, 55: 171
6 吴玉程. 面向等离子体W材料改善韧性的方法与机制 [J]. 金属学报, 2019, 55: 171
7 Li P, Hua R, Xue K M, et al. Research progress in tungsten and its alloys by plastic processing [J]. Rare Met. Mater. Eng., 2016, 45: 529
7 李 萍, 华 睿, 薛克敏等. 钨及其合金塑性加工的研究进展 [J]. 稀有金属材料与工程, 2016, 45: 529
8 Sabbaghianrad S, Langdon T G. A critical evaluation of the processing of an aluminum 7075 alloy using a combination of ECAP and HPT [J]. Mater. Sci. Eng., 2014, A596: 52
9 Wei Q, Zhang H T, Schuster B E, et al. Microstructure and mechanical properties of super-strong nanocrystalline tungsten processed by high-pressure torsion [J]. Acta Mater., 2006, 54: 4079
10 Faleschini M, Kreuzer H, Kiener D, et al. Fracture toughness investigations of tungsten alloys and SPD tungsten alloys [J]. J. Nucl. Mater., 2007, 367-370: 800
11 Hao T, Fan Z Q, Zhang T, et al. Strength and ductility improvement of ultrafine-grained tungsten produced by equal-channel angular pressing [J]. J. Nucl. Mater., 2014, 455: 595
12 Cui Z Z, Lin Y S, Shi G, et al. Effect of annealing temperature on microstructure and internal stress of high purity tungsten target [J]. Aerosp. Mater. Technol., 2017, 47(4): 63
12 崔子振, 林岩松, 石 刚等. 退火温度对高纯钨靶显微组织和内应力的影响 [J]. 宇航材料工艺, 2017, 47(4): 63)
13 Zhilyaev A P, Nurislamova G V, Kim B K, et al. Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion [J]. Acta Mater., 2003, 51: 753
14 Zhilyaev A P, Langdon T G. Using high-pressure torsion for metal processing: Fundamentals and applications [J]. Prog. Mater. Sci., 2008, 53: 893
15 El-Tahawy M, Huang Y, Choi H, et al. High temperature thermal stability of nanocrystalline 316L stainless steel processed by high-pressure torsion [J]. Mater. Sci. Eng., 2017, A682: 323
16 Harai Y, Kai M, Kaneko K, et al. Microstructural and mechanical characteristics of AZ61 magnesium alloy processed by high-pressure torsion [J]. Mater. Trans., 2008, 49: 76
17 Xu C, Horita Z, Langdon T G. The evolution of homogeneity in processing by high-pressure torsion [J]. Acta Mater., 2007, 55: 203
18 Kecskes L J, Cho K C, Dowding R J, et al. Grain size engineering of bcc refractory metals: Top-down and bottom-up—Application to tungsten [J]. Mater. Sci. Eng., 2007, A467: 33
19 Ganeev A V, Islamgaliev R K, Valiev R Z. Refinement of tungsten microstructure upon severe plastic deformation [J]. Phys. Met. Metall., 2014, 115: 139
20 Zhang Y, Ganeev A V, Gao X, et al. Influence of HPT deformation temperature on microstructures and thermal stability of ultrafine-grained tungsten [J]. Mater. Sci. Forum., 2008, 584-586: 1000
21 Zhang Y, Ganeev A V, Wang J T, et al. Observations on the ductile-to-brittle transition in ultrafine-grained tungsten of commercial purity [J]. Mater. Sci. Eng., 2009, A503: 37
22 Li P, Wang X, Xue K M, et al. Microstructure and recrystallization behavior of pure W powder processed by high-pressure torsion [J]. Int. J. Refract. Met. Hard Mater., 2016, 54: 439
23 Edalati K, Horita Z. A review on high-pressure torsion (HPT) from 1935 to 1988 [J]. Mater. Sci. Eng., 2016, A652: 325
24 Li P, Lin Q, Wang X, et al. Recrystallization behavior of pure molybdenum powder processed by high-pressure torsion [J]. Int. J. Refract. Met. Hard Mater., 2018, 72: 367
25 Zhao Y H, Bingert J F, Zhu Y T, et al. Tougher ultrafine grain Cu via high-angle grain boundaries and low dislocation density [J]. Appl. Phys. Lett., 2008, 92: 081903
26 Degtyarev M V, Chashchukhina T I, Voronova L M, et al. Influence of the relaxation processes on the structure formation in pure metals and alloys under high-pressure torsion [J]. Acta Mater., 2007, 55: 6039
27 Jiang T H, Liu M P, Xie X F, et al. Grain boundary structure of Al-Mg alloys processed by high pressure torsion [J]. Chin. J. Mater. Res., 2014, 28: 371
27 蒋婷慧, 刘满平, 谢学锋等. 高压扭转大塑性变形Al-Mg合金中的晶界结构 [J]. 材料研究学报, 2014, 28: 371
28 Staker M R, Holt D L. The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 ℃ [J]. Acta Metall., 1972, 20: 569
[1] WANG Lei, LIU Mengya, LIU Yang, SONG Xiu, MENG Fanqiang. Research Progress on Surface Impact Strengthening Mechanisms and Application of Nickel-Based Superalloys[J]. 金属学报, 2023, 59(9): 1173-1189.
[2] GONG Shengkai, LIU Yuan, GENG Lilun, RU Yi, ZHAO Wenyue, PEI Yanling, LI Shusuo. Advances in the Regulation and Interfacial Behavior of Coatings/Superalloys[J]. 金属学报, 2023, 59(9): 1097-1108.
[3] ZHANG Leilei, CHEN Jingyang, TANG Xin, XIAO Chengbo, ZHANG Mingjun, YANG Qing. Evolution of Microstructures and Mechanical Properties of K439B Superalloy During Long-Term Aging at 800oC[J]. 金属学报, 2023, 59(9): 1253-1264.
[4] LU Nannan, GUO Yimo, YANG Shulin, LIANG Jingjing, ZHOU Yizhou, SUN Xiaofeng, LI Jinguo. Formation Mechanisms of Hot Cracks in Laser Additive Repairing Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1243-1252.
[5] LI Jingren, XIE Dongsheng, ZHANG Dongdong, XIE Hongbo, PAN Hucheng, REN Yuping, QIN Gaowu. Microstructure Evolution Mechanism of New Low-Alloyed High-Strength Mg-0.2Ce-0.2Ca Alloy During Extrusion[J]. 金属学报, 2023, 59(8): 1087-1096.
[6] CHEN Liqing, LI Xing, ZHAO Yang, WANG Shuai, FENG Yang. Overview of Research and Development of High-Manganese Damping Steel with Integrated Structure and Function[J]. 金属学报, 2023, 59(8): 1015-1026.
[7] LIU Xingjun, WEI Zhenbang, LU Yong, HAN Jiajia, SHI Rongpei, WANG Cuiping. Progress on the Diffusion Kinetics of Novel Co-based and Nb-Si-based Superalloys[J]. 金属学报, 2023, 59(8): 969-985.
[8] SUN Rongrong, YAO Meiyi, WANG Haoyu, ZHANG Wenhuai, HU Lijuan, QIU Yunlong, LIN Xiaodong, XIE Yaoping, YANG Jian, DONG Jianxin, CHENG Guoguang. High-Temperature Steam Oxidation Behavior of Fe22Cr5Al3Mo-xY Alloy Under Simulated LOCA Condition[J]. 金属学报, 2023, 59(7): 915-925.
[9] ZHANG Deyin, HAO Xu, JIA Baorui, WU Haoyang, QIN Mingli, QU Xuanhui. Effects of Y2O3 Content on Properties of Fe-Y2O3 Nanocomposite Powders Synthesized by a Combustion-Based Route[J]. 金属学报, 2023, 59(6): 757-766.
[10] WU Dongjiang, LIU Dehua, ZHANG Ziao, ZHANG Yilun, NIU Fangyong, MA Guangyi. Microstructure and Mechanical Properties of 2024 Aluminum Alloy Prepared by Wire Arc Additive Manufacturing[J]. 金属学报, 2023, 59(6): 767-776.
[11] GUO Fu, DU Yihui, JI Xiaoliang, WANG Yishu. Recent Progress on Thermo-Mechanical Reliability of Sn-Based Alloys and Composite Solder for Microelectronic Interconnection[J]. 金属学报, 2023, 59(6): 744-756.
[12] WANG Fa, JIANG He, DONG Jianxin. Evolution Behavior of Complex Precipitation Phases in Highly Alloyed GH4151 Superalloy[J]. 金属学报, 2023, 59(6): 787-796.
[13] FENG Aihan, CHEN Qiang, WANG Jian, WANG Hao, QU Shoujiang, CHEN Daolun. Thermal Stability of Microstructures in Low-Density Ti2AlNb-Based Alloy Hot Rolled Plate[J]. 金属学报, 2023, 59(6): 777-786.
[14] WANG Changsheng, FU Huadong, ZHANG Hongtao, XIE Jianxin. Effect of Cold-Rolling Deformation on Microstructure, Properties, and Precipitation Behavior of High-Performance Cu-Ni-Si Alloys[J]. 金属学报, 2023, 59(5): 585-598.
[15] LIU Manping, XUE Zhoulei, PENG Zhen, CHEN Yulin, DING Lipeng, JIA Zhihong. Effect of Post-Aging on Microstructure and Mechanical Properties of an Ultrafine-Grained 6061 Aluminum Alloy[J]. 金属学报, 2023, 59(5): 657-667.
No Suggested Reading articles found!