Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 657-668    DOI: 10.11900/0412.1961.2017.00543
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Recent Progresses in Competitive Grain Growth During Directional Solidification
Jincheng WANG(), Chunwen GUO, Junjie LI, Zhijun WANG
State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Cite this article: 

Jincheng WANG, Chunwen GUO, Junjie LI, Zhijun WANG. Recent Progresses in Competitive Grain Growth During Directional Solidification. Acta Metall Sin, 2018, 54(5): 657-668.

Download:  HTML  PDF(7349KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Competitive growth between different structures including phases, dendrites and grains is a common phenomenon existing in various microstructure evolution processes. The overgrowth outcome of competitive growth has a paramount influence on final solidification microstructures and mechanical behaviors of materials. The competitive grain growth during directional solidification is a key factor for microstructures controlling, especially for the preparation of single crystal turbine blades. In recent years, the competitive grain growth during directional solidification becomes a hot spot due to an increasing demand for the single crystal preparation and inconsistent experimental results with the classical Walton-Chalmers model. In this paper, the mechanism of competitive grain growth based on the classical Walton-Chalmers model and its challenges were firstly discussed, and then some recent research progresses in converging growth and diverging growth in two dimensional spaces, and non-uniplanar growth in three dimensional spaces were reviewed. Furthermore, the recent works of our group on competitive grain growth during directional solidification by using the phase field method were introduced. Finally, the outlooks of future studies on competitive grain growth during directional solidification are presented.

Key words:  directional solidification      competitive grain growth      phase field method      research progress     
Received:  20 December 2017     
ZTFLH:  TG244  
Fund: Supported by National Natural Science Foundation of China (Nos.51371151 and 51571165)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00543     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/657

Fig.1  Schematic of Walton-Charmers model (A1, A2—favorably oriented grains; B—unfavorably oriented grain; Δz—the distance between dendrite tips of favorably oriented grains and the liquidus; Δzθ—the distance between dendrite tips of unfavorably oriented grains and the liquidus; θ—the angle between the growth direction of unfavorably oriented dendrites and thermal gradient direction)[22]
Fig.2  Unusual overgrowth of converging grains during directional solidification in a superalloy[32]
(θGB—the grain boundary orientation)
Fig.3  Unusual overgrowth in bi-crystal converging growth during directional solidification (An—favorably oriented dendrites, Bn—unfavorably oriented dendrites, λGB—primary dentrite spacing, t—time) (a) phase-filed simulation results [22] (b) transparent alloy in-situ observation results[39]
Fig.4  Dendrite microstructures at different time (Δt1, Δt2, Δt3—time intervals between the occurrences of new primary arm generation from the favorably oriented grain)[54]
(a1~a4) simulation results (b1~b4) experimental results
Fig.5  Simulated side-branching behaviors in favorably oriented grain at diverging grain boundary (Sn—long side branches; z0—the distance between the interface position where the side-branching activity is recorded and the dendrite tip; x(z0, t)—side-branching signal)[54]
(a1, a2) snapshots of favorably oriented dendrite at diverging grain boundary
(b1, b2) side-branching signals extracted from dendrites A1 and A2, respectively
Fig.6  Schematics of competitive grain growth with different configurations (a~c) (A, C—favorably oriented grains, B—unfavorably oriented grain)[54]
Fig.7  Schematics of bi-crystal configurations in three dimensional spaces[40]
(a) converging growth without secondary dendrite rotation
(b) converging growth with secondary dendrites of grain A deviating from the grain boundary by 45°
(c) non-uniplanar growth with secondary dendrites of grain A deviating from the grain boundary by 45°
Fig.8  Converging competitive growth in large-scale simulations (θUO—the orientation angle of unfavorably oriented grain)[50]
(a) 0.05×106th step (1.3 s) (b) 0.25×106th step (6.7 s) (c) 1×106th step (26.8 s) (d) 3×106th step (80.4 s) (e) 7×106th step (187.5 s)
Fig.9  Cross-sectional microstructure evolution of the converging bi-crystal at the pulling distance of 15 mm (a), 25 mm (b) and 35mm (c)[41]
Fig.10  Non-planar competitive growth of Ni-based superalloy (a)[35] and DD8 superalloy (b)[40] in experiments
Fig.11  Phase field simulation results of space view of new primary arms in the favorably oriented grain (N1, N2, N3—new primary arms developed from the favorably oriented grain)
[1] Fu H Z, Guo J J, Liu L, et al.Directional Solidification and Processing of Advanced Materials [M]. Beijing: Science Press, 2009: 1(傅恒志, 郭景杰, 刘林等. 先进材料定向凝固 [M]. 北京: 科学出版社, 2009: 1)
[2] Fu H Z, He G, Li J G.Observation of competitive growth in a directionally solidified nickel base single crystal superalloy[J]. Acta Metall. Sin., 1997, 33: 1233(傅恒志, 何国, 李建国. 单晶高温合金定向凝固过程中晶体竞争生长观察[J]. 金属学报, 1997, 33: 1233)
[3] Hu Z Q, Liu L R, Jin T.Development of the Ni-base single crystal superalloys[J]. Aeroengine, 2005, 31: 1(胡壮麒, 刘丽荣, 金涛. 镍基单晶高温合金的发展[J]. 航空发动机, 2005, 31: 1)
[4] D'Souza N, Jennings P A, Yang X L, et al. Seeding of single-crystal superalloys—Role of constitutional undercooling and primary dendrite orientation on stray-grain nucleation and growth[J]. Metall. Mater. Transact., 2005, 36B: 657
[5] Yan Y H, Liu J W, Jia Z H, et al.Simulation and experimental studies on grain selection behavior of DD5 single crystal superalloy[J]. Mater. Sci. Forum, 2017, 878: 42
[6] Zhang H, Xu Q Y, Sun C B, et al.Simulation and experimental studied on grain selection behavior of single crystal superalloy: I. Starter block[J]. Acta Metall. Sin., 2013, 49: 1508(张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究I.引晶段[J]. 金属学报, 2013, 49: 1508)
[7] Zhang H, Xu Q Y, Sun C B, et al.Simulation and experimental studies on grain selection behavior of single crystal superalloy: II. Spiral part[J]. Acta Metall. Sin., 2013, 49: 1521(张航, 许庆彦, 孙长波等. 单晶高温合金螺旋选晶过程的数值模拟与实验研究II.螺旋段[J]. 金属学报, 2013, 49: 1521)
[8] Gao S F, Liu L, Wang N, et al.EBSD studies of grain evolution and grain selection behavior during the preparation of Ni-based single crystal superalloy DD3[J]. Acta Metall. Sin., 2011, 47: 1251(高斯峰, 刘林, 王柠等. 镍基单晶高温合金DD3制备过程中晶粒演化和选晶行为的EBSD研究[J]. 金属学报, 2011, 47: 1251)
[9] Wang N, Liu L, Gao S F, et al.Simulation of grain selection during single crystal casting of a Ni-base superalloy[J]. J. Alloys Compd., 2014, 586: 220
[10] Yang X L, Dong H B, Wang W, et al.Microscale simulation of stray grain formation in investment cast turbine blades[J]. Mater. Sci. Eng., 2004, A386: 129
[11] Zhang X L, Zhou Y Z, Jin T, et al.Study on the tendency of stray grain formation of Ni-based single crystal superalloys[J]. Acta Metall. Sin., 2012, 48: 1229(张小丽, 周亦胄, 金涛等. 镍基单晶高温合金杂晶形成倾向性的研究[J]. 金属学报, 2012, 48: 1229)
[12] Yang X L, Ness D, Lee P D, et al. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4 [J]. Mater. Sci. Eng., 2005, A413-414: 571
[13] Trempa M, Reimann C, Friedrich J, et al.Mono-crystalline growth in directional solidification of silicon with different orientation and splitting of seed crystals[J]. J. Cryst. Growth, 2012, 351: 131
[14] Deng P R, Li J G.Orientation control of crystal growth for TbFe1.9 alloy in a magnetic field[J]. Rare Met. Mater. Eng., 2006, 35: 1311(邓沛然, 李建国. 磁场中TbFe1.9晶体生长的取向控制[J]. 稀有金属材料与工程, 2006, 35: 1311)
[15] Stanford N, Djakovic A, Shollock B, et al.Defect grains in the melt-back region of cmsx-4 single crystal seeds [A]. Proceedings of the 10th International Symposium on Superalloys[C]. Warrendale, PA: TMS, 2004: 719
[16] Meng X B, Li J G, Chen Z Q, et al.Effect of platform dimension on the dendrite growth and stray grain formation in a Ni-base single-crystal superalloy[J]. Metall. Mater. Trans., 2013, 44A: 1955
[17] Yang C, Liu L, Zhao X, et al.Formation of stray grains during directional solidification of a superalloy AM3[J]. Appl. Phys., 2014, 114A: 979
[18] Bogdanowicz W, Albrecht R, Sieniawski J, et al.The subgrain structure in turbine blade roots of CMSX-4 superalloy[J]. J. Cryst. Growth, 2014, 401: 418
[19] Walton D, Chalmers B.The origin of the preferred orientation in the columnar zone of ingots[J]. Trans. Am. Inst. Min. Metall. Eng., 1959, 215: 447
[20] Rappaz M, Gandin C A.Modelling of microstructure formation in solidification processes[J]. Acta Metall. Mater., 1993, 41: 345
[21] Gandin C A, Rappaz M.A coupled finite element-cellular automaton model for the prediction of dendritic grain structures in solidification processes[J]. Acta Metall. Mater., 1994, 42: 2233
[22] Li J J, Wang Z J, Wang Y Q, et al.Phase-field study of competitive dendritic growth of converging grains during directional solidification[J]. Acta Mater., 2012, 60: 1478
[23] Esaka H.Dendrite growth and spacing in succinonitrile-acetone alloys [D]. Lausanne, Switzerland: EPFL, 1986
[24] D'Souza N, Ardakani M G, Wagner A, et al. Morphological aspects of competitive grain growth during directional solidification of a nickel-base superalloy, CMSX4[J]. J. Mater. Sci., 2002, 37: 481
[25] Wagner A, Shollock B A, McLean M. Grain structure development in directional solidification of nickel-base superalloys[J]. Mater. Sci. Eng., 2004, A374: 270
[26] Ardakani M G, D'Souza N, Wagner A, et al. Competitive grain growth and texture evolution during directional solidification of superalloys [A]. Superalloys 2000[C]. Warrendale, PA: TMS, 2000: 219
[27] He G, Li J G, Mao X M, et al.Investigation on competitive growth mechanism of crystals during unidirectional solidification[J]. J. Synth. Cryst., 1995, 24(4): 278(何国, 李建国, 毛协民等. 定向凝固晶粒宏观竞争生长机制的实验研究[J]. 人工晶体学报, 1995, 24: 278)
[28] Liu Z Y, Lei Y, Fu H Z.A study on mechanism of misoriented grain growth in single-crystal manufacture of DD8 nickel based superalloy[J]. Acta Metall. Sin., 2000, 36: 1(刘志义, 雷毅, 傅恒志. DD8镍基高温合金单晶制备中的杂晶长大机制[J]. 金属学报, 2000, 36: 1)
[29] Seo S M, Kim I S, Lee J H, et al.Grain structure and texture evolutions during single crystal casting of the Ni-base superalloy CMSX-4[J]. Met. Mater. Int., 2009, 15: 391
[30] Zhou Y Z, Volek A, Green N R.Mechanism of competitive grain growth in directional solidification of a nickel-base superalloy[J]. Acta Mater., 2008, 56: 2631
[31] Zhou Y Z, Green N R.Competitive grain growth in directional solidification of a nickel-base superalloy [A]. Superalloys[M]. Warrendale, PA: TMS, 2008: 317
[32] Zhou Y Z, Jin T, Sun X F.Structure evolution in directionally solidified bicrystals of nickel base superalloys[J]. Acta Metall. Sin., 2010, 46: 1327(周亦胄, 金涛, 孙晓峰. 双晶镍基高温合金定向凝固过程的结构演化[J]. 金属学报, 2010, 46: 1327)
[33] Epishin A I, Nolze G.Investigation of the competitive grain growth during solidification of single crystals of nickel-based superalloys[J]. Crystallogr. Rep., 2006, 51: 710
[34] Zhou Y Z, Sun X F.Effect of solidification rate on competitive grain growth in directional solidification of a nickel-base superalloy[J]. Sci. China: Tech. Sci., 2012, 56: 1327
[35] Lu Q, Li J G, Jin T, et al.Competitive growth in bi-crystal of Ni-based superalloys during directional solidification[J]. Acta Metall. Sin., 2011, 47: 641(卢琦, 李金国, 金涛等. 镍基双晶高温合金定向凝固过程中的竞争生长[J]. 金属学报, 2011, 47: 641)
[36] Zhao X B.Crystal orientation of single crystal superalloys under high thermal gradient directional solidification [D]. Xi'an: Northwestern Polytechnical University, 2010(赵新宝. 高梯度定向凝固单晶高温合金晶体取向研究 [D]. 西安: 西北工业大学, 2010)
[37] Yu H L, Lin X, Li J J, et al.Research on diverged bi-crystal competitive growth in directional solidification[J]. Acta Metall. Sin., 2013, 49: 58(宇红雷, 林鑫, 李俊杰等. 定向凝固发散双晶的竞争生长研究[J]. 金属学报, 2013, 49: 58)
[38] Yang C, Liu L, Zhao X B, et al.Competitive grain growth mechanism in three dimensions during directional solidification of a nickel-based superalloy[J]. J. Alloys Compd., 2013, 578: 577
[39] Yu H L, Li J J, Lin X, et al.Anomalous overgrowth of converging dendrites during directional solidification[J]. J. Cryst. Growth, 2014, 402: 210
[40] Liu Z Y, Lin M, Yu D E, et al.Dependence of competitive grain growth on secondary dendrite orientation during directional solidification of a Ni-based superalloy[J]. Metall. Mater. Trans., 2013, 44A: 5113
[41] Hu S S, Liu L, Cui Q W, et al.Converging competitive growth in bi-crystal of Ni-based superalloy during directional solidification[J]. Acta Metall. Sin., 2016, 52: 897(胡松松, 刘林, 崔强伟等. 镍基高温合金定向凝固过程中的汇聚型双晶竞争生长[J]. 金属学报, 2016, 52: 897)
[42] Hu S S, Yang W C, Cui Q W, et al.Effect of secondary dendrite orientations on competitive growth of converging dendrites of Ni-based bi-crystal superalloys[J]. Mater. Charact., 2017, 125: 152
[43] Eiken J.Dendritic growth texture evolution in Mg-based alloys investigated by phase-field simulation[J]. Int. J. Cast Met. Res., 2013, 22: 86
[44] Chen P, Tsai Y L, Lan C W.Phase field modeling of growth competition of silicon grains[J]. Acta Mater., 2008, 56: 4114
[45] Wang Y Q, Wang J C, Li J J.Phase field modeling of the growth and competition behavior of tilted dendrites in directional solidification[J]. Acta Phys. Sin., 2012, 61: 118103(王雅琴, 王锦程, 李俊杰. 定向倾斜枝晶生长规律及竞争行为的相场法研究[J]. 物理学报, 2012, 61: 118103)
[46] Meng X B, Lu Q, Zhang X L, et al.Mechanism of competitive growth during directional solidification of a nickel-base superalloy in a three-dimensional reference frame[J]. Acta Mater., 2012, 60: 3965
[47] Takaki T, Shimokawabe T, Ohno M, et al.Unexpected selection of growing dendrites by very-large-scale phase-field simulation[J]. J. Cryst. Growth, 2013, 382: 21
[48] Takaki T, Ohno M, Shimokawabe T, et al.Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal[J]. Acta Mater., 2014, 81: 272
[49] Takaki T, Ohno M, Shibuta Y, et al.Two-dimensional phase-field study of competitive grain growth during directional solidification of polycrystalline binary alloy[J]. J. Cryst. Growth, 2016, 442: 14
[50] Takaki T, Sakane S, Ohno M, et al.Large-scale phase-field studies of three-dimensional dendrite competitive growth at the converging grain boundary during directional solidification of a bicrystal binary alloy[J]. ISIJ Int., 2016, 56: 1427
[51] Sakane S, Takaki T, Ohno M, et al.GPU-accelerated 3D phase-field simulations of dendrite competitive growth during directional solidification of binary alloy[J]. IOP Conf. Ser.: Mater. Sci. Eng., 2015, 84: 012063
[52] Tourret D, Karma A.Growth competition of columnar dendritic grains: a phase-field study[J]. Acta Mater., 2015, 82: 64
[53] Tourret D, Song Y, Clarke A J, et al.Grain growth competition during thin-sample directional solidification of dendritic microstructures: A phase-field study[J]. Acta Mater., 2017, 122: 220
[54] Guo C W, Li J J, Yu H L, et al.Branching-induced grain boundary evolution during directional solidification of columnar dendritic grains[J]. Acta Mater., 2017, 136: 148
[55] Viardin A, Zalo?nik M, Souhar Y, et al.Mesoscopic modeling of spacing and grain selection in columnar dendritic solidification: Envelope versus phase-field model[J]. Acta Mater., 2017, 122: 386
[56] Pieters R, Langer J S.Noise-driven sidebranching in the boundary-layer model of dendritic solidification[J]. Phys. Rev. Lett., 1986, 56: 1948
[57] Langer J S.Dendritic sidebranching in the three-dimensional symmetric model in the presence of noise[J]. Phys. Rev., 1987, 36A: 3350
[58] Barber M N, Barbieri A, Langer J S.Dynamics of dendritic sidebranching in the two-dimensional symmetric model of solidification[J]. Phys. Rev., 1987, 36A: 3340
[59] Dougherty A, Kaplan P D, Gollub J P.Development of side branching in dendritic growth[J]. Phys. Rev. Lett., 1988, 58: 1652
[60] Brener E, Temkin D.Noise-induced sidebranching in the three-dimensional nonaxisymmetric dendritic growth[J]. Phys. Rev., 1995, 51E: 351
[61] Pocheau A, Bodea S, Georgelin M.Self-organized dendritic sidebranching in directional solidification: Sidebranch coherence within uncorrelated bursts[J]. Phys. Rev., 2009, 80E: 031601.
[62] Guo C W, Li J J, Ma Y, et al.Growth behaviors and forced modulation characteristics of dendritic sidebranches in directional solidification[J]. Acta Phys. Sin., 2015, 64: 148101(郭春文, 李俊杰, 马渊等. 定向凝固过程中枝晶侧向分枝生长行为与强制调控规律[J]. 物理学报, 2015, 64: 148101)
[63] Esaka H, Tamura M, Shinozuka K.Analysis of yield rate in single crystal casting process using an engineering simulation model[J]. Mater. Trans., 2005, 44: 829
[64] Esaka H, Shinozuka K, Tamura M.Analysis of single crystal casting process taking into account the shape of pigtail[J]. Mater. Sci. Eng., 2005, A413: 151
[65] Pocheau A, Deschamps J, Georgelin M.Dendrite growth directions and morphology in the directional solidification of anisotropic materials[J]. JOM, 2007, 59(7): 71
[66] Ghmadh J, Debierre J M, Deschamps J, et al.Directional solidification of inclined structures in thin samples[J]. Acta Mater., 2014, 74: 255
[67] Deschamps J, Georgelin M, Pocheau A.Growth directions of microstructures in directional solidification of crystalline materials[J]. Phys. Rev., 2008, 78E: 011605
[68] Xing H, Ankit K, Dong X L, et al.Growth direction selection of tilted dendritic arrays in directional solidification over a wide range of pulling velocity: A phase-field study[J]. Int. J. Heat Mass Transfer, 2018, 117: 1107
[69] Xing H, Dong X L, Chen C L, et al.Phase-field simulation of tilted growth of dendritic arrays during directional solidification[J]. Int. J. Heat Mass Transfer, 2015, 90: 911
[70] George W L, Warren J A.A parallel 3D dendritic growth simulator using the phase-field method[J]. J. Comput. Phys., 2002, 177: 264
[71] Provatas N, Goldenfeld N, Dantzig J.Efficient computation of dendritic microstructures using adaptive mesh refinement[J]. Phys. Rev. Lett., 1997, 80: 3308
[72] Zhu C S, Li H, Feng L, et al.GPU accelerated phase-field simulation of convection effect on dendritic growth[J]. J. Comput. Theor. Nanosci., 2015, 12: 3591
[73] Yang C, Xu Q Y, Liu B C.GPU-accelerated three-dimensional phase-field simulation of dendrite growth in a nickel-based superalloy[J]. Comput. Mater. Sci., 2017, 136: 133
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] XIONG Tianying, WANG Jiqiang. Research Progress of Cold Spray in Institute of Metal Research, Chinese Academy of Sciences[J]. 金属学报, 2023, 59(4): 537-546.
[4] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] ZHAO Yuhong, JING Jianhui, CHEN Liwen, XU Fanghong, HOU Hua. Current Research Status of Interface of Ceramic-Metal Laminated Composite Material for Armor Protection[J]. 金属学报, 2021, 57(9): 1107-1125.
[8] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[9] WEI Shizhong, XU Liujie. Review on Research Progress of Steel and Iron Wear-Resistant Materials[J]. 金属学报, 2020, 56(4): 523-538.
[10] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[11] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[12] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[13] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[14] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[15] Cheng WEI, Changbo KE, Haitao MA, Xinping ZHANG. A Modified Phase Field Model Based on Order Parameter Gradient and Simulation of Martensitic Transformation in Large Scale System[J]. 金属学报, 2018, 54(8): 1204-1214.
No Suggested Reading articles found!