Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 669-681    DOI: 10.11900/0412.1961.2017.00541
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
Research Progress on Controlled Solidificationand Its Applications
Guang CHEN1(), Gong ZHENG1, Zhixiang QI1, Jinpeng ZHANG1, Pei LI1, Jialin CHENG2, Zhongwu ZHANG3
1 Engineering Research Center of Materials Behavior and Design, Ministry of Education, MIIT Key Laboratory of Advanced Metallic and Intermetallic Materials Technology,Nanjing University of Science and Technology, Nanjing 210094, China
2 School of Materials Engineering, Nanjing Institute of Technology, Nanjing 211167, China
3 Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, China
Cite this article: 

Guang CHEN, Gong ZHENG, Zhixiang QI, Jinpeng ZHANG, Pei LI, Jialin CHENG, Zhongwu ZHANG. Research Progress on Controlled Solidificationand Its Applications. Acta Metall Sin, 2018, 54(5): 669-681.

Download:  HTML  PDF(14927KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper reviews the study of our group on controlled solidification and its applications in recent 20 years, including melt heat treatment before solidification, semi-solid processing between liquidus and solidus, rapid progressive solidification of nonequilibrium materials, semi-solid progressive solidification, and directional heat treatment in solid phase transformation. Furthermore, a new technique of material preparation is proposed with the combination of directional solidification and directional heat treatment. In addition, an outlook of controlled solidification technology and its applications are provided.

Key words:  controlled solidification      melt heat treatment      semi-solid progressive solidification      directional solidification      directional heat treatment     
Received:  20 December 2017     
ZTFLH:  TG244  
Fund: Supported by National Natural Science Foundation of China (Nos.51731006, 51771093 and 51571117), China Postdoctoral Science Foundation (No.2017M620212) and National Postdoctoral Program for Innovative Talents (No.BX201700120)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00541     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/669

Fig.1  Influences of melt superheat temperature on interface morphology of Ni-based superalloy in directional solidification[17]
(a) 1400 ℃ (b) 1500 ℃ (c) 1600 ℃ (d) 1700 ℃
Fig.2  Macrostructures of Ti-48Al-2Cr-2Nb alloys after different cycles of cyclic melt heat treatment[23]
(a) 0 cyc (b) 10 cyc (c) 15 cyc (d) 20 cyc
Fig.3  Microstructure (a) and room temperature compressive stress-strain curves (b) of bulk metallic glasses (BMG) composites synthesised by semi-solid processing[24] (Vit.1 monolithic BMG; S1 (Zr56.2Ti13.8- Nb5.0Cu6.9Ni5.6Be12) with spherical crystalline; S2 (Zr60Ti14.7Nb5.3Cu5.6Ni4.4Be10) with spherical crystalline)
Fig.4  Microstructures of the Zr-BMG composites held at 850 ℃[30]
(a) 0 min (b) 1 min (c) 3 min (d) 5 min (e) 10 min (f) 20 min (g) 40 min (h) 200 min
Fig.5  Average equivalent diameter Deq, average shape factor SF (a) and inverse specific surface area Sv-1 (b) of precipitated β-Zr phase as a function of the holding time[30]
Fig.6  Microstructures of the Mg-BMG composites prepared by different method[32]
(a, b) copper mold casting (c, d) rapid progressive solidification
Fig.7  Microstructures (a~e) and compressive stress-strain curves (f) of Zr-BMG composites prepared by rapid progressive solidification at different withdrawal velocities of 8 mm/s (a), 4 mm/s (b), 2 mm/s (c), 1 mm/s (d) and 0.46 mm/s (e)[34]
Fig.8  Wf/Zr-BMG composites prepared by infiltration casting (a) and rapid progressive solidification (b)
Fig.9  Appearance (a) and OM images take from the surface (b) and center (c) for the Zr-BMG composites prepared by semi-solid progressive solidification (SSPS)[34,35]
Fig.10  Engineering tensile stress-strain curve of the Zr-BMG composites prepared by SSPS (Inset show the samples after tension)[35]
Fig.11  Typical microstructures of iron directionally annealed at 900 ℃ with various withdrawing velocities (The direction of columnar grain growth is from left to right)[77]
(a) 0.5 μm/s (b) 0.8 μm/s (c) 3 μm/s (d) 8 μm/s (e) 15 μm/s (f) 30 μm/s
Fig.12  Relationship between lamellar and crystal orientation for primary β phase TiAl alloy (a) and primary α phase TiAl alloy (b)[87]
Fig.13  Illustration of fully lamellar TiAl alloy with parallel orientation
(a) single crystal (b) bi-crystals (c) poly-crystals
[1] Kermanpur A, Varahraam N, Engilehei E, et al.Directional solidification of Ni base superalloy IN738LC to improve creep properties[J]. Mater. Sci. Technol., 2000, 16: 579
[2] Versnyder F I, Shank M E.The development of columnar grain and single crystal high temperature materials through directional solidification[J]. Mater. Sci. Eng., 1970, 6: 213
[3] Versnyder F L, Barlow R B, Sink L W, et al.Directional solidification in the precision casting of gas-turbine parts[J]. Modern Cast, 1967, 52: 68
[4] Erickson J S, Owczarski W A, Curran P W.Process speeds up directional solidification[J]. Met. Prog., 1971, 99: 58
[5] Giamei A F, Tschinkel J G.Liquid metal cooling: A new solidification technique[J]. Metall. Trans., 1976, 7A: 1427
[6] Chen G, Li J G, Fu H Z.Advanced unidirectional solidification processing[J]. Mater. Rev., 1999, 13(5): 5(陈光, 李建国, 傅恒志. 先进定向凝固技术[J]. 材料导报, 1999, 13(5): 5)
[7] Lux B, Haour G, Mollard F.Dynamic undercooling of superalloys[J]. Metall, 1981, 35: 1235
[8] Li J S.On electromagnetic shaping directional solidification of stainless steel [D]. Xi'an: Northwestern Polytechnical University, 1998(李金山. 钢的电磁约束成形定向凝固研究 [D]. 西安: 西北工业大学, 1998)
[9] Gill S C, Zimmermann M, Kurz W.Laser resolidification of the Al-Al2Cu eutectic: The coupled zone[J]. Acta Metall. Mater., 1992, 40: 2895
[10] Koohpayeh S M, Fort D, Abell J S.The optical floating zone technique: A review of experimental procedures with special reference to oxides[J]. Prog. Cryst. Growth Charact. Mater., 2008, 54: 121
[11] Su Y Q, Guo J Z, Liu C, et al.Progress in theory and technology on directional solidification[J]. Spec. Cast. Nonferrous Alloys, 2006, 26: 25(苏彦庆, 郭景哲, 刘畅等. 定向凝固技术与理论研究的进展[J]. 特种铸造及有色合金, 2006, 26: 25)
[12] Chen G, Fu H Z.Advanced Materials Fabricated by Nonequilibrium Solidification [M]. Beijing: Science Press, 2004: 14(陈光, 傅恒志. 非平衡凝固新型金属材料 [M]. 北京: 科学出版社, 2004: 14)
[13] Вертман А А, Самарин А М. Методы исследования свойств металлических расплавов [М]. Москва: Наука, 1969: 197
[14] Chen G, Cai Y W, Li J G, et al.Research and application of melt heat treatment[J]. J. Hebei Univ. Sci. Technol., 1998, 19(1): 6(陈光, 蔡英文, 李建国等. 熔体热处理研究及其应用[J]. 河北科技大学学报, 1998, 19(1): 6)
[15] Chen G, Yu J W, Sun Y C, et al.Influence of melt thermal history on the unidirectional solidification interface stability of Al-4.65% Cu alloy[J]. Chin. J. Mater. Res., 1999, 13: 497(陈光, 俞建威, 孙彦臣等. 熔体热历史对Al-Cu合金定向凝固界面稳定性的影响[J]. 材料研究学报, 1999, 13: 497)
[16] Chen G, Yu J W, Fu H Z.Influence of the melt heat history on the solid/liquid interface morphology evolution in unidirectional solidification[J]. J. Mater. Sci. Lett., 1999, 18: 1571
[17] Chen G, Yu J W, Xie F Q, et al.Influence of melt superheat history on morphology of unidirectional directionally solidified solid/liquid interface in nickel-base superalloys[J]. Acta Metall. Sin., 2001, 37: 488(陈光, 俞建威, 谢发勤等. 熔体过热历史对Ni基高温合金定向凝固界面形态的影响[J]. 金属学报, 2001, 37: 488)
[18] Geng X G, Chen G, Fu H Z.The effect of melt superheat on interface morphological stability during directional solidification[J]. Acta Metall. Sin., 2002, 38: 225(耿兴国, 陈光, 傅恒志. 熔体过热对定向凝固界面形态稳定性的影响[J]. 金属学报, 2002, 38: 225)
[19] Geng X G, Chen G, Fu H Z.Hysteresis effect on some physical properties of melt superheat[J]. Mater. Sci. Eng., 2002, 20: 549(耿兴国, 陈光, 傅恒志. 过热合金熔体的几种物性滞后效应[J]. 材料科学与工程, 2002, 20: 549)
[20] Tiller W A, Jackson K A, Rutter J W, et al.The redistribution of solute atoms during the solidification of metals[J]. Acta Metall., 1953, 1: 428
[21] Yang G, Kou H C, Yang J R, et al.Microstructure control of Ti-45Al-8.5Nb-(W, B, Y) alloy during the solidification process[J]. Acta Mater., 2016, 112: 121
[22] Yang G, Kou H C, Liu Y, et al.Response of the solidification microstructure of a high Nb containing TiAl alloy to an isothermal high-temperature heat treatment[J]. Intermetallics, 2015, 63: 1
[23] Yang G, Kou H C, Wang J, et al.Effect of melt treatment on the grain sizes of Ti-48Al-2Cr-2Nb Alloy[J]. Spec. Cast. Nonferrous Alloys, 2014, 34: 243(杨光, 寇宏超, 王军等. 熔体处理对Ti-48Al-2Cr-2Nb合金凝固组织的影响[J]. 特种铸造及有色合金, 2014, 34: 243)
[24] Sun G Y, Chen G, Liu C T, et al.Innovative processing and property improvement of metallic glass based composites[J]. Scr. Mater., 2006, 55: 375
[25] Sun G Y, Chen G, Chen G L.Comparison of microstructures and properties of Zr-based bulk metallic glass composites with dendritic and spherical bcc phase precipitates[J]. Intermetallics, 2007, 15: 632
[26] Hofmann D C, Suh J Y, Wiest A, et al.Designing metallic glass matrix composites with high toughness and tensile ductility[J]. Nature, 2008, 451: 1085
[27] Hofmann D C, Suh J Y, Wiest A, et al.Development of tough, low-density titanium-based bulk metallic glass matrix composites with tensile ductility[J]. Proc. Natl. Acad. Sci. USA, 2008, 105: 20136
[28] Inoue A, Kong F L, Zhu S L, et al.Production methods and properties of engineering glassy alloys and composites[J]. Intermetallics, 2015, 58: 20
[29] Suryanarayana C, Inoue A.Bulk Metallic Glasses [M]. Boca Raton: CRC Press, 2010: 441
[30] Cheng J L. Chen G, Xu F, et al.Correlation of the microstructure and mechanical properties of Zr-based in-situ bulk metallic glass matrix composites[J]. Intermetallics, 2010, 18: 2425
[31] Zhang X L, Chen G, Du Y L.Synthesis of plastic Mg-based bulk metallic glass matrix composites by the Bridgman solidification[J]. Metall. Mater. Trans., 2012, 43A: 2604
[32] Zhang X L, Sun G Y. Chen G.Improving the strength and the toughness of Mg-based bulk metallic glass by Bridgman solidification[J]. Mater. Sci. Eng., 2013, A564: 158
[33] Chen G, Zhang X L, Liu C T.High strength and plastic strain of Mg-based bulk metallic glass composite containing in situ formed intermetallic phases[J]. Scr. Mater., 2013, 68: 150
[34] Cheng J L.Phase selection, oxygen and mechanical behavior of Zr based bulk metallic glass composites [D]. Nanjing: Nanjing University of Science and Technology, 2012(成家林. 锆基块体金属玻璃复合材料相选择、氧含量与力学行为研究 [D]. 南京: 南京理工大学, 2012)
[35] Chen G, Cheng J L, Liu C T.Large-sized Zr-based bulk-metallic-glass composite with enhanced tensile properties[J]. Intermetallics, 2012, 28: 25
[36] Chang K M.Tensile and impact properties of directionally solidified Fe-40Al intermetallic[J]. Metall. Mater. Trans., 1990, 21A: 3027
[37] Bei H, George E P.Microstructures and mechanical properties of a directionally solidified NiAl-Mo eutectic alloy[J]. Acta Mater., 2005, 53: 69
[38] Johnson D R, Masuda Y, Inui H, et al.Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material[J]. Acta Mater., 1997, 45: 2523
[39] Bewlay B P, Lipsitt H A, Jackson M R, et al. Solidification processing of high temperature intermetallic eutectic-based alloys [J]. Mater. Sci. Eng., 1995, A192-193: 534
[40] Wang Q S, Shen Y, Pan B Y, et al.Strong interplay between stripe spin fluctuations, nematicity and superconductivity in FeSe[J]. Nat. Mater., 2016, 15: 159
[41] Liu Y, Li Z C, Liu W P, et al.KxFe2-ySe2 single crystals: Floating-zone growth, transport and structural properties[J]. Supercond. Sci. Technol., 2012, 25: 075001
[42] Motoyama E M, Yu G, Vishik I M, et al.Spin correlations in the electron-doped high-transition-temperature superconductor Nd2-xCexCuO4±δ[J]. Nature, 2007, 445: 186
[43] Jang D H, Lee W J, Sohn E, et al.Single crystal growth and optical properties of a transparent perovskite oxide LaInO3[J]. J. Appl. Phys., 2017, 121: 125109
[44] Phelan W A, Koohpayeh S M, Cottingham P, et al.On the chemistry and physical properties of flux and floating zone grown SmB6 single crystals[J]. Sci. Rep., 2016, 6: 20860
[45] Hatnean M C, Lees M R, Paul D M K, et al . Large, high quality single-crystals of the new Topological Kondo Insulator, SmB6[J]. Sci. Rep., 2013, 3: 3071
[46] Jain A, Krautloher M, Porras J, et al.Higgs mode and its decay in a two dimensional antiferromagnet[J]. Nat. Phys., 2017, 13: 633
[47] Sutter D, Fatuzzo C G, Moser S, et al.Hallmarks of Hunds coupling in the Mott insulator Ca2RuO4[J]. Nat. Commun., 2017, 8: 15176
[48] Cao S X, Zhao H Z, Kang B J, et al.Temperature induced spin switching in SmFeO3 single crystal[J]. Sci. Rep., 2014, 4: 5960
[49] Shen Y, Li Y D, Wo H L, et al.Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate[J]. Nature, 2016, 540: 559
[50] Ren Y, Palstra T T M, Khomskii D I, et al. Temperature-induced magnetization reversal in a YVO3 single crystal[J]. Nature, 1998, 396: 441
[51] Oh Y S, Luo X, Huang F T, et al.Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals[J]. Nat. Mater., 2015, 14: 407
[52] Viskadourakis Z, Sunku S S, Mukherjee S, et al.Ferroelectricity in underdoped La-based cuprates[J]. Sci. Rep., 2015, 5: 15268
[53] Baloch M M, Bhadeshia H K D H. Directional recrystallization in Inconel MA 6000 nickel base oxide dispersion strengthened superalloy[J]. Mater. Sci. Technol., 1990, 6: 1236
[54] Da C Andrade E N. Preparation of single crystal wires of metals of high melting point[J]. Proc. R. Soc.: Mathemat., Phys. Eng. Sci., 1937, 163A: 16
[55] Chou T S, Bhadeshia H K D H. Recrystallization temperatures in mechanically alloyed oxide-dispersion-strengthened MA956 and MA957 steels[J]. Mater. Sci. Eng., 1994, A189: 229
[56] Miodownik M A, Wilkinson A J, Martin J W.On the secondary recrystallisation of MA754[J]. Acta Mater., 1998, 46: 2809
[57] Sha W, Bhadeshia H K D H. Modelling of recrystallisation in mechanically alloyed materials[J]. Mater. Sci. Eng., 1997, A233: 91
[58] Baker I, Li J.Directional annealing of cold-rolled copper single crystals[J]. Acta Mater., 2002, 50: 805
[59] Li J, Baker I.An EBSP study of directionally recrystallized cold-rolled nickel[J]. Mater. Sci. Eng., 2005, A392: 8
[60] Li J, Johns S L, Iliescu B M, et al.The effect of hot zone velocity and temperature gradient on the directional recrystallization of polycrystalline nickel[J]. Acta Mater., 2002, 50: 4491
[61] Humphreys F J.A unified theory of recovery, recrystallization and grain growth, based on the stability and growth of cellular microstructures—I. The basic model[J]. Acta Mater., 1997, 45: 4231
[62] Greaves M S, Base P S, Roberts W T, et al.Directional recrystallization in nickel based high temperature alloy[J]. Mater. Sci. Technol., 1996, 12: 730
[63] Bhadeshia H K D H. Recrystallisation of practical mechanically alloyed iron-based and nickel-base superalloys[J]. Mater. Sci. Eng., 1997, A223: 64
[64] Evens P J, Martin J W, Little E A.Secondary recrystallization of MA957 oxide dispersion strengthened by ferritic superalloy[J]. Mater. Sci. Technol., 1992, 8: 531
[65] Godfrey A W, Martin J W.The effect of directional recrystallization on the low cycle fatigue response of a powder metallurgy nickel-based superalloy at elevated temperatures[J]. Mater. Sci. Eng., 1997, A222: 91
[66] Duhl D N, Thompson R R.Directional structures for advanced aircraft turbine blades[J]. J. Aircraft., 1977, 14: 521
[67] Cairns R L, Curwick L R, Benjamin J S.Grain growth in dispersion strengthened superalloys by moving zone heat treatments[J]. Metall. Trans., 1975, 6A: 179
[68] Gessinger E H.Mechanical alloying of In-738[J]. Metall. Trans., 1976, 7A: 1203
[69] Gater C A, Martin J W.Grain reorientation during zone annealing of MA6000[J]. Mater. Sci. Technol., 1996, 12: 613
[70] Miodownik M A, Martin J W, Little E A.Secondary recrystallization of two oxide dispersion strengthened ferritic superalloys: MA 956 and MA 957[J]. Mater. Sci. Technol., 1994, 10: 102
[71] Sha W, Bhadeshia H K D H. Directional recrystallization in mechanically alloyed oxide dispersion-strengthened metals by annealing in a moving temperature gradient[J]. J. Mater. Sci., 1995, 30: 1439
[72] Marsh J M. Martin J W.Micromechanisms of texture development during zone annealing of MA 6000 extrusions[J]. Mater. Sci. Technol., 1991, 7: 183
[73] Mujahid M, Martin J W.The effect of oxide particle coherency on Zener pinning in ODS superalloys[J]. J. Mater. Sci., 1994, 13: 153
[74] Capdevila C, Chen Y L, Jones A R, et al.Grain boundary mobility in Fe-base oxide dispersion strengthened PM2000 alloy[J]. ISI Int., 2003, 43: 777
[75] Watanabe T, Fujii H, Oikawa H, et al.Grain boundaries in rapidly solidified and annealed Fe-6.5 mass% Si polycrystalline ribbons with high ductility[J]. Acta Metall., 1989, 37: 941
[76] Tsujimoto T, Matsui T, Suzuki T, et al.Evolution of high aspect ratio grains in a TiAl-based alloy by directional grain growth[J]. Intermetallics, 2001, 9: 97
[77] Zhang Z W, Chen G, Chen G L.Dynamics and mechanism of columnar grain growth of pure iron under directional annealing[J]. Acta Mater., 2007, 55: 5988
[78] Zhang Z W, Chen G L, Chen G.Microstructural evolution of commercial pure iron during directional annealing[J]. Mater. Sci. Eng., 2006, A422: 241
[79] Zhang Z W, Chen G L, Chen G.The effect of drawing velocity and phase transformation on the structure of directionally annealed iron[J]. Mater. Sci. Eng., 2006, A434: 58
[80] Zhang Z W, Chen G L, Chen G. The effect of crystallographic texture on columnar grain growth in commercial pure iron during directional annealing [J]. Mater. Sci. Eng., 2006, A435-436: 573
[81] Ruo Z R, Liu Y, Deng Q Q, et al.Phase field study of the formation of columnar-grain structure during directional annealing[J]. Guangxi Phys., 2013, 34(1): 9(罗志荣, 刘瑶, 邓芊芊等. 相场方法研究定向退火条件下柱状晶粒的形成过程[J]. 广西物理, 2013, 34(1): 9)
[82] Ruo Z R, Gao Y J, Deng Q Q, et al.Phase field simulation of formation and continuous propagation of columnar grain structure during directional annealing[J]. Chin. J. Nonferrous Met., 2014, 24: 1778(罗志荣, 高英俊, 邓芊芊等. 定向退火条件下柱状晶形成及连续扩展的相场模拟[J]. 中国有色金属学报, 2014, 24: 1778)
[83] Zhang Z W, Chen G, Bei H B, et al.Directional recrystallization and microstructures of an Fe-6.5wt%Si alloy[J]. J. Mater. Res., 2009, 24: 2654
[84] Zhang Z W, Chen G, Bei H, et al.Improvement of magnetic properties of Fe-6.5wt%Si by directional recrystallization[J]. Appl. Phys. Lett., 2008, 93: 191908
[85] Bertram A, Olschewski J.Anisotropic creep modelling of the single crystal superalloy SRR99[J]. Comput. Mater. Sci., 1996, 5: 12
[86] Burgers W G.On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium[J]. Physica, 1934, 1: 561
[87] Chen G, Peng Y B, Zheng G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nat. Mater., 2016, 15: 876
[88] Bewlay B P, Weimer M, Kelley T, et al.The science, technology, and implementation of TiAl alloys in commercial aircraft engines [A]. Materials Research Society Symposium Proceedings [C]. Pittsburgh: Materials Research Society Press, 2013: 49
[89] Pollock T M.Alloy design for aircraft engines[J]. Nat. Mater., 2016, 15: 809
[90] Inui H, Oh M H, Nakamura A, et al.Room-temperature tensile deformation of polysynthetically twinned (PST) crystals of TiAl[J]. Acta Metall. Mater., 1992, 40: 3095
[91] Yamaguchi M, Inui H, Ito K.High-temperature structural intermetallics[J]. Acta Mater., 2000, 48: 307
[92] Kim M C, Oh M H, Lee J H, et al. Composition and growth rate effects in directionally solidified TiAl alloys [J]. Mater. Sci. Eng., 1997, A239-240: 570
[93] Jung I S, Kim M C, Lee J H, et al.High temperature phase equilibria near Ti-50 at% Al composition in Ti-Al system studied by directional solidification[J]. Intermetallics, 1999, 7: 1247
[94] Jung I S, Jang H S, Oh M H, et al. Microstructure control of TiAl alloys containing β stabilizers by directional solidification [J]. Mater. Sci. Eng., 2002, A329-331: 13
[95] Lapin J, Gabalcová Z, Pelachová T.Effect of Y2O3 crucible on contamination of directionally solidified intermetallic Ti-46Al-8Nb alloy[J]. Intermetallics, 2011, 19: 396
[96] Lapin J, Ondrú? L, Nazmy M.Directional solidification of intermetallic Ti-46Al-2W-0.5 Si alloy in alumina moulds[J]. Intermetallics, 2002, 10: 1019
[97] Lapin J, Gabalcová Z.Solidification behaviour of TiAl-based alloys studied by directional solidification technique[J]. Intermetallics, 2011, 19: 797
[98] Schütze M.High-temperature alloys: Single-crystal performance boost[J]. Nat. Mater., 2016, 15: 823
[1] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[2] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[3] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[4] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[5] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[6] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[7] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[8] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[9] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[10] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[11] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[12] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[13] Lin LIU, Dejian SUN, Taiwen HUANG, Yanbin ZHANG, Yafeng LI, Jun ZHANG, Hengzhi FU. Directional Solidification Under High Thermal Gradient and Its Application in Superalloys Processing[J]. 金属学报, 2018, 54(5): 615-626.
[14] Yuan HOU, Zhongming REN, Jiang WANG, Zhenqiang ZHANG, Xia LI. Effect of Longitudinal Static Magnetic Field on the Columnar to Equiaxed Transition in Directionally Solidified GCr15 Bearing Steel[J]. 金属学报, 2018, 54(5): 801-808.
[15] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
No Suggested Reading articles found!