Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (5): 647-656    DOI: 10.11900/0412.1961.2017.00516
Special Issue for the Solidification of Metallic Materials Current Issue | Archive | Adv Search |
The Evolution of Seeding Technique for the Lamellar Orientation Controlling of γ-TiAl Based Alloys
Yanqing SU(), Tong LIU, Xinzhong LI, Ruirun CHEN, Jingjie GUO, Hengzhi FU
National Key Laboratory for Precision Hot Processing of Metals, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Yanqing SU, Tong LIU, Xinzhong LI, Ruirun CHEN, Jingjie GUO, Hengzhi FU. The Evolution of Seeding Technique for the Lamellar Orientation Controlling of γ-TiAl Based Alloys. Acta Metall Sin, 2018, 54(5): 647-656.

Download:  HTML  PDF(8727KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

TiAl-based alloys will be potentially used as light-weight high temperature structural materials in aerospace industry. The comprehensive mechanical properties of TiAl-based alloys can be improved significantly when lamellar orientation is aligned parallel to principle stress. In this paper, the development of seeding technique in directionally solidified TiAl-based alloys is reviewed, including the traditional Ti-43Al-3Si seeding method and some novel seeding methods. Those methods mainly include the second directional solidification method, self-seeding technique, quasi-seeding technique and high-melting metal seeding technique. Those newly developed methods will promote the engineering applications of the lamellar structure controlling technology for TiAl-based alloys. However, the stable growth of different leading phase in its designed direction depends on the coupling of the seed and growth dynamic parameteres. How to discover the influence of the growth dynamic parameteres on the designed growth direction is a key problem.

Key words:  TiAl-based alloy      directional solidification      seeding technique      lamellar orientation controlling     
Received:  04 December 2017     
ZTFLH:  TG146.23  
Fund: Supported by National Natural Science Foundation of China (Nos.51425402 and 51331005), National Key Research and Development Program of China (No.2017YFA0403804) and Chang Jiang Scholars Program (No.T2014227)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00516     OR     https://www.ams.org.cn/EN/Y2018/V54/I5/647

Fig.1  Directional solidified ingot (a) and macrostructures (b) of Ti-47Al alloy obtained by electromagnetic confinement and directional solidification technology (EMCDS) at 10 μm/s with using Ti-43Al-3Si seed[17]
Fig.2  Longitudinal microstructures of directionally solidified Ti-47Al ingot grown from a Ti-43Al-3Si seed at 36 mm/h[20]
(a) more silicide particles existed in the initial part and the lamellar direction inclined small to the directional solidification (DS) direction
(b) silicides obviously decreased in transient part
(c) no silicide appeared in steady state growth stage and the lamellar direction exactly parallel to the DS direction
Fig.3  Microstructures of mush zone of Ti-43Al-3Si alloy after melting and thermal stabilization stage with the time of 0 min (a), 30 min (b) and 120 min (c)[22]
Fig.4  Microstructure evolution along the growth direction of directionally solidified Ti-47Al-1.0W-0.5Si by Ti-43Al-3Si seeded at growth rate of 10 μm/s (a~d)[22]
Fig.5  Macrostructures of the directionally solidified Ti-46Al-5Nb alloy after single (a) and double (b) DS processes at a growth rate of 30 μm/s (A—annealing region consisting of equiaxed grains, B—DS region in which columnar grain are found)[26]
Fig.6  Schematic of growth mode for the Ti-46Al-5Nb alloy at the initial stage of the second DS step[26]
Fig.7  Schematics of seed making by water cooling copper crucible[29]
(a) before heating (b) while heating (c) after cooling (d) DS process
Fig.8  Macrostructures of the longitudinal section of the seeds (a) and the DS sample (b)[30]
Fig.9  Schematics of preparing specimens for lamellar orientation control by self-seeding DS[31]
(a) structures of master ingot (b) structures of seeding specimen (c) solidification processing
Fig.10  Microstructures of annealing region (a), initial interface (b) and DS region (c) of the EMCDS sample solidi?ed at 10 mm/s[17]
Fig.11  TiAl binary phase diagram and the illustration of microstructure transformation upon rapid heating[17]
Fig.12  Directional solidified ingot with indication of positions where composition transition zone and DS zone (a), and macrostructure of the transitional interface between seeding material and directionally solidified alloy (b)[40]
Fig.13  Schematics of the β seeding technique in directionally solidified Ti-47Al-0.5W-0.5Si[40]
(a) the formation of the composition transition zone
(b) the initial DS stage in composition transition zone
(c) the primary β dendrite is transformed peritectically into α grain
(d) the growth of α phase in steady-state growth region
[1] Yang R.Advances and challenges of TiAl base alloys[J]. Acta Metall. Sin., 2015, 51: 129(杨锐. 钛铝金属间化合物的进展与挑战[J]. 金属学报, 2015, 51: 129)
[2] Janschek P.Wrought TiAl blades[J]. Mater. Today: Proc., 2015, 2(suppl.1): S92
[3] Gupta R K, Pant B, Sinha P P.Theory and practice of γ +α2 Ti aluminide: A review[J]. Trans. Indian Inst. Met., 2014, 67: 143
[4] Clemens H, Mayer S.Intermetallic titanium aluminides in aerospace applications—Processing, microstructure and properties[J]. Mater. High Temp., 2016, 33: 560
[5] Fan J L, Liu J X, Wu S, et al.Microstructure formation and interface characteristics of directionally solidified TiAl-Si alloys in alumina crucibles with a new Y2O3 skull-aided technology[J]. Sci. Rep., 2017, 7: 45198
[6] Chen G L, Lin J P.Physical Metallurgy of Ordered Intermetallics Structure Materials [M]. Beijing: Metallurgical Industry Press, 1999: 35(陈国良, 林均品. 有序金属间化合物结构材料物理金属学基础 [M]. 北京: 冶金工业出版社, 1999: 35)
[7] Yamaguchi M, Johnson D R, Lee H N, et al.Directional solidification of TiAl-base alloys[J]. Intermetallics, 2000, 8: 511
[8] Chen G, Peng Y B, Zheng G, et al.Polysynthetic twinned TiAl single crystals for high-temperature applications[J]. Nat. Mater., 2016, 15: 876
[9] Peng Y B, Chen F, Wang M Z, et al.Relationship between mechanical properties and lamellar orientation of PST crystals in Ti- 45Al- 8Nb alloys[J]. Acta Metall. Sin., 2013, 49: 1457(彭英博, 陈锋, 王敏智等. Ti-45Al-8Nb合金PST晶体片层取向与力学性能的关系[J]. 金属学报, 2013, 49: 1457)
[10] Johnson D R, Inui H, Muto S, et al.Microstructural development during directional solidification of α-seeded TiAl alloys[J]. Acta Mater., 2006, 54: 1077
[11] Kim S E, Lee Y T, Oh M H, et al. Directional solidification of TiAl base alloys using a polycrystalline seed [J]. Mater. Sci. Eng., 2002,A329-331: 25
[12] Su Y Q, Liu T, Li X Z, et al.Lamellar orientation control in directionally solidified TiAl intermetallics[J]. China Foundry, 2014, 11: 219
[13] Luo W Z, Shen J, Min Z X, et al.Lamellar orientation control in γ-TiAl alloys by directional solidification[J]. Rare Met. Mater. Eng., 2009, 38: 1864(罗文忠, 沈军, 闵志先等. γ-TiAl合金中片层组织取向的控制[J]. 稀有金属材料与工程, 2009, 38: 1864)=
[14] Luo W Z, Shen J, Li Q L, et al.Effects of growth rate on microstructure of directionally solidified Ti-43Al-3Si alloy with a seed technique[J]. Acta Metall. Sin., 2006, 42: 1238(罗文忠, 沈军, 李庆林等. 抽拉速率对Ti-43Al-3Si合金籽晶法定向凝固组织的影响[J]. 金属学报, 2006, 42: 1238)
[15] Johnson D R, Inui H, Yamaguch M.Directional solidification and microstructural control of the TiAl/Ti3Al lamellar microstructure in TiAl-Si alloys[J]. Acta Mater., 1996, 44: 2523
[16] Johnson D R, Masuda Y, Inui H, et al.Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material[J]. Acta Mater., 1997, 45: 2523
[17] Du Y J.Frabication of lamellar microstructure of TiAl alloys by electromagnetic confinement and its properties [D]. Xi'an: Northwestern Polytechnical University, 2015(杜玉俊. TiAl合金定向片层组织电磁约束制备及力学性能 [D]. 西安: 西北工业大学, 2015)
[18] Du Y J, Shen J, Xiong Y L, et al.Lamellar microstructure alignment and fracture toughness in Ti-47Al alloy by electromagnetic confinement and directional solidification[J]. Mater. Sci. Eng., 2015, A621: 94
[19] Luo W Z, Shen J, Min Z X, et al.Lamellar orientation control of TiAl alloys under high temperature gradient with a Ti-43Al-3Si seed[J]. J. Cryst. Growth, 2008, 310: 5441
[20] Luo W Z, Shen J, Li Q L, et al.Preparation of aligned lamellar microstructure in TiAl alloys by directional solidification with a seed technique[J]. Acta Metall. Sin, 2007, 43: 1287(罗文忠, 沈军, 李庆林等. TiAl合金定向全片层组织的籽晶法制备[J]. 金属学报, 2007, 43: 1287)
[21] Luo W Z, Shen J, Li Q L, et al.Microstructural evolution of Ti-47Al alloy during directional solidification by seeding method[J]. Acta Metall. Sin., 2007, 43: 897(罗文忠, 沈军, 李庆林等. Ti-47Al合金籽晶法定向凝固过程中的组织演化[J]. 金属学报, 2007, 43: 897)
[22] Liu T.Initial mushy zone evolution and microstructure controlling during directional solidification in TiAl-based alloys [D]. Harbin: Harbin Institute of Technology, 2017(刘桐. 定向凝固TiAl基合金初始糊状区演变及微观组织控制 [D]. 哈尔滨: 哈尔滨工业大学, 2017)
[23] Ding X F, Lin J P, Zhang L Q, et al.Lamellar orientation control in a Ti-46Al-5Nb alloy by directional solidification[J]. Scr. Mater., 2011, 65: 61
[24] Zhang L W, Lin J P, Ding X F, et al.Crystal orientation control in TiAl-Nb alloys through a double directional solidification process[J]. J. Alloys Compd., 2016, 656: 720
[25] Ding X F, Zhang L Q, Lin J P, et al.Microstructure control and mechanical properties of directionally solidified TiAl-Nb alloys[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 747
[26] Ding X F, Lin J P, Zhang L Q, et al.Microstructural control of TiAl-Nb alloys by directional solidification[J]. Acta Mater., 2012, 60: 498
[27] Ding X F, Lin J P, Zhang L Q, et al.A closely-complete peritectic transformation during directional solidification of a Ti-45Al-8.5Nb alloy[J]. Intermetallics, 2011, 19: 1115
[28] Zhang C J, Xu D M, Fu H Z, et al.To eliminate the composition transient zone in directional solidification of TiAl alloys[J]. J. Cryst. Growth, 2008, 310: 3604
[29] Zhang C J, Fu H Z, Xu D M, et al.Feasibility of integrated seed making and directional solidification of TiAl alloy using cold crucible[J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 330
[30] Zhang C J.Lamellar orientation control of directionally solidified γ-TiAl-based alloys [D]. Harbin: Harbin Institute of Technology, 2008(张成军. 定向凝固γ-TiAl基合金片层取向控制 [D]. 哈尔滨: 哈尔滨工业大学, 2008)
[31] Fan J L.Microstructure evolution and lamellae orientation control of directionally solidified Ti-46Al-0.5W-0.5Si alloy [D]. Harbin: Harbin Institute of Technology, 2012(樊江磊. 定向凝固Ti-46Al-0.5W-0.5Si合金组织演化及层片取向控制 [D]. 哈尔滨: 哈尔滨工业大学, 2012)
[32] Liu D M, Li X Z, Su Y Q, et al.Microstructure evolution in directionally solidified Ti-(50, 52)at%Al alloys[J]. Intermetallics, 2011, 19: 175
[33] Liu G H, Wang Z D, Li X Z, et al.Continued growth controlling of the non-preferred primary phase for the parallel lamellar structure in directionally solidified Ti-50Al-4Nb alloy[J]. J. Alloys Compd., 2015, 632: 152
[34] Liu G H, Li T R, Fu T L, et al.Morphology and competitive growth during the development of the parallel lamellar structure by self-seeding in directionally solidified Ti-50Al-4Nb alloy[J]. J. Alloys Compd., 2016, 682: 601
[35] Liu T, Luo L S, Zhang D H, et al.Comparison of microstructures and mechanical properties of as-cast and directionally solidified Ti-47Al-1W-0.5Si alloy[J]. J. Alloys Compd., 2016, 682: 663
[36] Li X Z, Fan J L, Su Y Q, et al.Lamellar orientation and growth direction of α phase in directionally solidified Ti-46Al-0.5W-0.5Si alloy[J]. Intermetallics, 2012, 27: 38
[37] Du Y J, Shen J, Xiong Y L, et al.Determining the effects of growth velocity on microstructure and mechanical properties of Ti-47Al alloy using electromagnetic confinement and directional solidification[J]. JOM, 2014, 66: 1914
[38] Du Y J, Shen J, Xiong Y L, et al.Lamellar microstructure alignment in Ti-47Al alloy by electromagnetic confinement and directional solidification using a seed[J]. JOM, 2015, 67: 1258
[39] Du Y J, Shen J, Xiong Y L, et al.Stability of lamellar microstructures in a Ti-48Al-2Nb-2Cr alloy during heat treatment and its application to lamellae alignment as a quasi-seed[J]. Intermetallics, 2015, 61: 80
[40] Liu T, Luo L S, Su Y Q, et al.Lamellar orientation control of Ti-47Al-0.5W-0.5Si by directional solidification using β seeding technique[J]. Intermetallics, 2016, 73: 1
[1] MA Dexin, ZHAO Yunxing, XU Weitai, WANG Fu. Effect of Gravity on Directionally Solidified Structure of Superalloys[J]. 金属学报, 2023, 59(9): 1279-1290.
[2] ZHANG Jian, WANG Li, XIE Guang, WANG Dong, SHEN Jian, LU Yuzhang, HUANG Yaqi, LI Yawei. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2023, 59(9): 1109-1124.
[3] WANG Hu, ZHAO Lin, PENG Yun, CAI Xiaotao, TIAN Zhiling. Microstructure and Mechanical Properties of TiB2 Reinforced TiAl-Based Alloy Coatings Prepared by Laser Melting Deposition[J]. 金属学报, 2023, 59(2): 226-236.
[4] SU Zhenqi, ZHANG Congjiang, YUAN Xiaotan, HU Xingjin, LU Keke, REN Weili, DING Biao, ZHENG Tianxiang, SHEN Zhe, ZHONG Yunbo, WANG Hui, WANG Qiuliang. Formation and Evolution of Stray Grains on Remelted Interface in the Seed Crystal During the Directional Solidification of Single-Crystal Superalloys Assisted by Vertical Static Magnetic Field[J]. 金属学报, 2023, 59(12): 1568-1580.
[5] LI Yanqiang, ZHAO Jiuzhou, JIANG Hongxiang, HE Jie. Microstructure Formation in Directionally Solidified Pb-Al Alloy[J]. 金属学报, 2022, 58(8): 1072-1082.
[6] CHEN Ruirun, CHEN Dezhi, WANG Qi, WANG Shu, ZHOU Zhecheng, DING Hongsheng, FU Hengzhi. Research Progress on Nb-Si Base Ultrahigh Temperature Alloys and Directional Solidification Technology[J]. 金属学报, 2021, 57(9): 1141-1154.
[7] ZHANG Xiaoli, FENG Li, YANG Yanhong, ZHOU Yizhou, LIU Guiqun. Influence of Secondary Orientation on Competitive Grain Growth of Nickel-Based Superalloys[J]. 金属学报, 2020, 56(7): 969-978.
[8] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[9] ZHANG Jian,WANG Li,WANG Dong,XIE Guang,LU Yuzhang,SHEN Jian,LOU Langhong. Recent Progress in Research and Development of Nickel-Based Single Crystal Superalloys[J]. 金属学报, 2019, 55(9): 1077-1094.
[10] Zongwei JI,Song LU,Hui YU,Qingmiao HU,Levente Vitos,Rui YANG. First-Principles Study on the Impact of Antisite Defects on the Mechanical Properties of TiAl-Based Alloys[J]. 金属学报, 2019, 55(5): 673-682.
[11] Hui FANG,Hua XUE,Qianyu TANG,Qingyu ZHANG,Shiyan PAN,Mingfang ZHU. Dendrite Coarsening and Secondary Arm Migration in the Mushy Zone During Directional Solidification:[J]. 金属学报, 2019, 55(5): 664-672.
[12] Yan YANG, Guangyu YANG, Shifeng LUO, Lei XIAO, Wanqi JIE. Microstructures and Growth Orientation of Directionally Solidification Mg-14.61Gd Alloy[J]. 金属学报, 2019, 55(2): 202-212.
[13] JIN Hao, JIA Qing, LIU Ronghua, XIAN Quangang, CUI Yuyou, XU Dongsheng, YANG Rui. Seed Preparation and Orientation Control of PST Crystals of Ti-47Al Alloy[J]. 金属学报, 2019, 55(12): 1519-1526.
[14] Yanxiang LI, Xiaobang LIU. Directionally Solidified Porous Metals: A Review[J]. 金属学报, 2018, 54(5): 727-741.
[15] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
No Suggested Reading articles found!