Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 247-264    DOI: 10.11900/0412.1961.2017.00424
Orginal Article Current Issue | Archive | Adv Search |
Progress on Numerical Simulation of Vibration in the Metal Solidification
Shiping WU(), Rujia WANG, Wei CHEN, Guixin DAI
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
Cite this article: 

Shiping WU, Rujia WANG, Wei CHEN, Guixin DAI. Progress on Numerical Simulation of Vibration in the Metal Solidification. Acta Metall Sin, 2018, 54(2): 247-264.

Download:  HTML  PDF(5912KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The application of vibration technology to the metal solidification process can not only effectively improve the solidified structure and the performance of castings, but also have the advantages of low cost, energy saving and environmental protection. Therefore, the application of vibration technology in metal solidification has been extensively studied in experiments. However, due to the high temperature and opacity of the metal melt, hindering its measurement and observation, the mechanism how the vibration affects the solidification is not fully understood. Numerical simulation can provide the variation law of various parameters such as flow field, temperature field and stress field under vibration condition, which helps us understand the mechanism of vibration more thoroughly. Meanwhile, the numerical simulation of the influence of vibration on the solidification of metal melt has been much less systematically studied. This paper introduces the research progress of numerical simulation of vibration applied in metal solidification. The main vibration modes include ultrasonic vibration, mechanical vibration and pulsed electromagnetic vibration. The application mainly includes melt processing, filling, solidification, purification and ageing process of numerical simulation. The current research status of numerical simulation theory and technology of vibration applied in all aspects of casting was summarized systematically. Furthermore, the future research directions of numerical simulation of vibration in metal solidification process were prospected.

Key words:  vibration      ultrasonic vibration      mechanical vibration      pulsed electromagnetic vibration      numerical simulation     
Received:  12 October 2017     
Fund: Supported by National Natural Science Foundation of China (Nos.51475120 and U1537201)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00424     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/247

Fig.1  Modal analyses of L-shaped (a~c) and T-shaped (d~f) waveguide rods with lengths of 110 mm (a, d), 125 mm (b, e) and 135 mm (c, f)[32] (f—frequency)
Fig.2  Microstructures (a~c) and simulation results (d~e) of ingot under ultrasonic with power of 0 W (a, d), 200 W (b, e) and 240 W (c, f)[50]
Fig.3  Ultrasonic pressure amplitude distributions of 80 W ultrasound in the melt with depths of 0.15 m (a) and 0.23 m (b)[59]
Fig.4  Solidified morphologies of A356 castings with different riser volumes of 100% (a), 60% (b) and 0 (c) under applying ultrasonic[66]
Simulation content Simulation software Governing equation Constitutive equation Ref.
Modal analysis ANSYS Oscillation equation Hooke's law [30~33]
Acoustic flow ANSYS-FLUENT, PROCAST N-S equation Newton's law of viscous fluid [51,52,57]
Temperature field ANSYS-FLUENT, PROCAST Heat conduction equation Newton's law of viscous fluid [57]
Cavitation effect ANSYS-FLUENT Cavitation model Newton's law of viscous fluid [49,54]
Acoustic field COMSOL Wave equation Newton's law of viscous fluid [53,55,56]
Table 1  Applications of numerical simulation of ultrasonic vibration during the solidification of metal[30~33,49,51~57]
Fig.5  The filling process of dry sand[71]
(a) start filling (b) applying vibration (c) filling sand (d) finish filling
Fig.6  Filling process of liquid metal with vibration[77]
Simulation content Simulation software Governing equation Constitutive equation Ref.
Vibration moulding EDEM, 3DEC et al. Momentum equation Hooke's law [70~72]
Modal analysis ANSYS Oscillation equation Newton's law of viscous fluid [85~87]
Flow field FLOW-3D, ANSYS-FLUENT N-S equation Newton's law of viscous fluid [77~82]
Temperature field MAGMASOFT,
ANSYS-FLUENT
Heat conduction equation Newton's law of viscous fluid [88~92]
Table 2  Applications of numerical simulation of mechanical vibration during the solidification of metal[70~72,77~82,85~92]
Fig.7  Fluid patterns under pulsed magnetic field in rectangular samples with aspect ratios of 1.0 (a), 2.0 (b), 4.5 (c) and 5.5 (d) [106]
Simulation content Simulation software Governing equation Constitutive equation Ref.
Electromagnetic field ANSYS, Opera 3D Maxwell equation Newton's law of viscous fluid [95,99,107,112,115,117]
Flow field ANSYS-FLUENT N-S equation [95,97~101,104~106,
108,109,115,117]
Newton's law of viscous fluid
Temperature field ANSYS-FLUENT Heat conduction equation Newton's law of viscous fluid [98,99,112]
Table 3  Applications of numerical simulation of pulsed electromagnetic vibration during the solidification of metal[95,97~101,104~109,112,115,117]
[1] Shukla D P, Goel D P, Pandey P C.Influence of vibration during solidification on ingot soundness and mechanical properties of aluminum alloy test castings[J]. All-India Semin. Alum., 1978, 1: 26
[2] Garlick R G, Wallace J F.Grain refinement of solidifying metals by vibration[J]. Trans. Am. Foundrymen's Soc., 1959, 67: 366
[3] Burbure R R, Hareesha I, Murthy K S S. Influence of low frequency vibrations on aluminium eutectics[J]. Br. Foundryman, 1979, 72: 34
[4] Pillai N R.Effect of low frequency mechanical vibration on structure of modified aluminum-silicon eutectic[J]. Metall. Trans., 1972, 3: 1313
[5] Campbell J.Effects of vibration during solidification[J]. Int. Met. Rev., 1981, 26: 71
[6] Seal A K, Banerjee M K.Effect of vibration on the solidification of grey cast iron[J]. Indian Foundry J., 1984, 30: 15
[7] Richards R S, Rostoker W.The influence of vibration on the solidification of an aluminum alloy[J]. Trans. ASM, 1956, 48: 884
[8] Southgate P D.Action of vibration on solidifying aluminum alloys[J]. Trans. Am. Inst. Min. Metall. Eng., 1957, 209: 514
[9] Batyshev A I, Kuskov P K.Vibration treatment of cast aluminum blanks[J]. Sov. Cast. Technol., 1989, 12: 24
[10] Puskar A.The use of high-intensity ultrasonics[J]. Mater. Sci. Monogr., 1982, 13: 32
[11] Hiedemann E A.Metallurgical effects of ultrasonic waves[J]. J. Acoust. Soc. Am., 1954, 26: 831
[12] Southin R T.The influence of low-frequency vibration on the nucleation of solidifying metals[J]. J. Inst. Met., 1966, 94: 401
[13] Balandin G F, Yu Y P.Effect of vibration on the crystallization process in aluminium casting[J]. Russ. Cast. Prod., 1963: 221
[14] Fisher T P.Effects of vibrational energy on the solidification of aluminium alloys[J]. Br. Foundryman, 1973, 66: 71
[15] Kocatepe K, Burdett C F.Effect of low frequency vibration on macro and micro structures of LM6 alloys[J]. J. Mater. Sci., 2000, 35: 3327
[16] Wang H X, Zhang G P, Xu C X, et al.Effect of mechanical vibration on grain refinement and solidification shrinkage of aluminum[J]. Res. Stud. Foundry Equip., 2007, (1): 28(王红霞, 张国平, 许春香等. 机械振动对纯Al晶粒细化及凝固收缩的影响[J]. 铸造设备研究, 2007, (1): 28)
[17] Wang C J, Han D D, Chen L, et al.Application and development of vibration technology in metal casting molding[J]. J. Hebei Univ. Sci. Technol., 2014, 35: 229(王成军, 韩董董, 陈蕾等. 振动技术在金属材料铸造成形中的应用与发展[J]. 河北科技大学学报, 2014, 35: 229)
[18] Anderson J D Jr. Computational Fluid Dynamics[M]. New York: McGraw-Hill Education, 1995: 49
[19] Niu B H, Sun C Y.Semi-spatial Media and Seismic Wave Propagation: Theory and Application of Seismic Wave Propagation [M]. Beijing: Petroleum Industry Press, 2002: 39(牛滨华, 孙春岩. 半空间介质与地震波传播: 地震波传播理论与应用 [M]. 北京: 石油工业出版社, 2002: 39)
[20] Carcione J M.Seismic modeling in viscoelastic media[J]. Geophysics, 1993, 58: 110
[21] Biot M A.Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range[J]. J. Acoust. Soc. Am., 1956, 28: 168
[22] Li Q C, Chen K Y, Zeng S Y.Influence of rare earth additions on rheological behavior of Al-5Cu alloy in solid-liquid coexistence zone[J]. Mater. Sci. Technol., 1991, 7: 770
[23] Ludwig O, Drezet J M, Ménésès P, et al.Rheological behavior of a commercial AA5182 aluminum alloy during solidification[J]. Mater. Sci. Eng., 2005, A413: 174
[24] Shao Z W, Le Q C, Cui J Z, et al.Numerical simulation of standing waves for ultrasonic purification of magnesium alloy melt[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: S382
[25] Wang R J, Wu S P, Chen W.Numerical simulation of mechanical wave propagation during solidification of ZL205A alloy [A]. 8th International Federation of Physical and Numerical Simulation of Materials Processing [C]. Seattle: Purdue University Press, 2016: 28
[26] Gao S L, Zhai Q J, Qi F P, et al.Application and development of high-intensity ultrasonic in solidification process of metals[J]. Mater. Rev., 2002, 16: 5(高守雷, 翟启杰, 戚飞鹏等. 超声波在金属凝固中的应用与发展[J]. 材料导报, 2002, 16: 5)
[27] Parrini L.New technology for the design of advanced ultrasonic transducers for high-power applications[J]. Ultrasonics, 2004, 41: 261
[28] Gu Y J, Yang K, Zhu P.Finite element analysis on power ultrasonic vibration system[J]. J. North Chin. Electr. Power Univ., 1999, 26: 78(顾煜炯, 杨昆, 朱萍. 功率超声振动系统的有限元分析[J]. 华北电力大学学报, 1999, 26: 78)
[29] Liang Z F, Zhou G P, Zhang Y H.Application of ANSYS in power ultrasound[J]. Mach. Electr., 2005, (8): 10(梁召峰, 周光平, 张亦慧. ANSYS在功率超声领域中的应用[J]. 机械与电子, 2005, (8): 10)
[30] Deng L N, Li X Q, Wu H, et al.Design and research on horn applied in aluminum alloy ultrasonic casting[J]. Hot Work. Technol., 2010, 39(17): 68(邓丽娜, 李晓谦, 吴昊等. 铝合金超声波铸造用变幅杆的设计与研究[J]. 热加工工艺, 2010, 39(17): 68)
[31] Zhang Y.Apparatus design of the combined power ultrasonic and applied pressure and its effect on microstructure of the Al-Cu alloy [D]. Guangzhou: South China University of Technology, 2016(张杨. 超声—压力耦合的装置设计及其对Al-Cu合金微观组织的影响 [D]. 广州: 华南理工大学, 2016)
[32] Liang G, Chen S, Zhou Y J, et al.Numerical simulation and experimental study of an ultrasonic waveguide for ultrasonic casting of 35CrMo steel[J]. J. Iron Steel Res. Int., 2016, 23: 772
[33] Zhu Y L, Bian F L, Wang Y L, et al.Conjugate heat transfer analysis of an ultrasonic molten metal treatment system[J]. Chin. J. Mech. Eng., 2014, 27: 986
[34] Rayleigh L.On the pressure developed in a liquid during the collapse of a spherical cavity[J]. London, Edinb. Dublin Philosoph. Mag. J. Sci., 1917, 34: 94
[35] Plesset M S.The dynamics of cavitation bubbles[J]. J. Appl. Mech., 1949, 16: 277
[36] Neppiras E A, Noltingk B E.Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation[J]. Proc. Phys. Soc. London, 1951, 64B: 1032
[37] Keller J B, Miksis M.Bubble oscillations of large amplitude[J]. J. Acoust. Soc. Am., 1980, 68: 628
[38] Flynn H G.Cavitation dynamics. I. A mathematical formulation[J]. J. Acoust. Soc. Am., 1975, 57: 1379
[39] Liu H L, Liu D X, Wang Y, et al.Numerical research status and prospects of cavitating flow in a pump[J]. Fluid Mach., 2011, 39: 38(刘厚林, 刘东喜, 王勇等. 泵空化流数值计算研究现状及展望[J]. 流体机械, 2011, 39: 38)
[40] Kunz R F, Boger D A, Stinebring D R, et al.A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Comput. Fluids, 2000, 29: 849
[41] Singhal A K, Athavale M M, Li H, et al.Mathematical basis and validation of the full cavitation model[J]. J. Fluids Eng., 2002, 124: 617
[42] Merkle C L, Feng J, Buelow P E O. Computational modeling of dynamics of sheet cavitation [A]. 3rd International Symposium on Cavitation[C]. France: Grenoble, 1998, 2: 47
[43] Senocak I, Shyy W.A pressure-based method for turbulent cavitating flow computations[J]. J. Comput. Phys., 2002, 176: 363
[44] Saito Y, Nakamori I, Ikohagi T. Numerical analysis of unsteady vaporous cavitating flow around a hydrofoil [A]. 5th International Symposium on Cavitation [C]. Osaka, 2003, CD-R: Cav03-OS-1-006
[45] Nastac L.Numerical modeling of solidification morphologies and segregation patterns in cast dendritic alloys[J]. Acta Mater., 1999, 47: 4253
[46] Nastac L.Mathematical modeling of the solidification structure evolution in the presence of ultrasonic stirring[J]. Metall. Mater. Trans., 2011, 42B: 1297
[47] Jian X, Xu H, Meek T T, et al.Effect of power ultrasound on solidification of aluminum A356 alloy[J]. Mater. Lett., 2005, 59: 190
[48] Nastac L.Multiscale modeling of the solidification microstructure evolution in the presence of ultrasonic stirring [A]. IOP Conference Series: Materials Science and Engineering [C]. Philadelphia: IOP Publishing, 2012, 33: 012079
[49] Shao Z W, Le Q C, Zhang Z Q, et al.Numerical simulation of acoustic pressure field for ultrasonic grain refinement of AZ80 magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 2476
[50] Shao G J, Hu S C, Xia C X, et al.Numerical simulation and experimental verification on effects of ultrasonic treatment on solidification structure of 7050 aluminum alloy[J]. Spec. Cast. Nonferrous Alloy, 2011, 31: 119(邵高建, 胡仕成, 夏晨希等. 超声对7050铝合金凝固组织影响的数值模拟[J]. 特种铸造及有色合金, 2011, 31: 119)
[51] Kong W, Cang D Q.Effects of ultrasound on the flow field in molten steel and solidification structure[J]. Simulation, 2012, 88: 694
[52] Ishiwata Y, Komarov S, Takeda Y.Investigation of acoustic streaming in aluminum melts exposed to high-intensity ultrasonic irradiation [A]. 13th International Conference on Aluminum Alloy[C] Pittsburgh: Springer, 2012: 183
[53] Huang H J, Xu Y F, Da S, et al.Effect of ultrasonic melt treatment on structure refinement of solidified high purity aluminum[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 2414
[54] Haghayeghi R, Ezzatneshan E, Bahai H.Retracted Article: Grain refinement of AA5754 aluminum alloy by ultrasonic cavitation: Experimental study and numerical simulation[J]. Met. Mater. Int., 2015, 21: 109
[55] Zhai W, Wang B J, Liu H M, et al.Three orthogonal ultrasounds fabricate uniform ternary Al-Sn-Cu immiscible alloy[J]. Sci. Rep., 2016, 6: 36718
[56] Zhai W, Liu H M, Hong Z Y, et al.A numerical simulation of acoustic field within liquids subject to three orthogonal ultrasounds[J]. Ultrason. Sonochem., 2017, 34: 130
[57] Wang G, Croaker P, Dargusch M, et al.Simulation of convective flow and thermal conditions during ultrasonic treatment of an Al-2Cu alloy[J]. Comput. Mater. Sci., 2017, 134: 116
[58] Chen X R, Le Q C, Wang X B, et al.Variable-frequency ultrasonic treatment on microstructure and mechanical properties of ZK60 alloy during large diameter semi-continuous casting[J]. Metals, 2017, 7: 173
[59] Shao Z W, Le Q C, Zhang Z Q, et al.Effect of ultrasonic power on grain refinement and purification processing of AZ80 alloy by ultrasonic treatment[J]. Met. Mater. Int., 2012, 18: 209
[60] Yasuda K, Umemura S I, Takeda K.Particle separation using acoustic radiation force and elecrostatic force[J]. J. Acoust. Soc. Am., 1996, 99: 1965
[61] Weiser M A H, Apfel R E, Neppiras E A. Interparticle forces on red cells in a standing wave field[J]. Acta Acust. United Acust., 1984, 56: 114
[62] Schram C J.Manipulation of particles in an acoustic field[J]. Adv. Sonochem., 1991, 2: 293
[63] Yan H, Huang W X. Numerical simulation on thixo-forging of magnesium matrix composite [J]. Adv. Mater. Res., 2011, 189-193: 2535
[64] Huang W X, Yan H, Huang B H.Numerical simulation of rheoforming of Al2Y/AZ91 magnesium matrix composites[J]. Rare Met., 2016, 40: 776(黄文先, 闫洪, 黄碧浩. Al2Y/AZ91镁基复合材料流变成形数值模拟[J]. 稀有金属, 2016, 40: 776)
[65] Rao Y S, Yan H, Wan J.Rheological model of semisolid Mg2Si/AM60 composites prepared by ultrasonic vibration treatment[J]. Rare Met., 2015, doi: 10.1007/s12598-015-0619-x
[66] Shin S S, Kim W C, Kim K H, et al.Improvement of riser efficiency using high-intensity ultrasonic treatment in A356 alloy[J]. Mater. Trans., 2015, 56: 1605
[67] Yang M S, Bao Y, Liu H Z.Experimental study on compaction properties of dry sand in expendable pattern casting[J]. Foundry Technol., 2000, (2): 42(杨卯生, 宝音, 刘宏志. 消失模铸造干砂紧实特性的试验研究[J]. 铸造技术, 2000, (2): 42)
[68] Li L X, Li Z M, Tan J B, et al.Properties of sand filling and compaction in pattern cavity of horizontal varied section on EPC[J]. Foundry, 2003, 52: 412(李立新, 李增民, 谭建波等. 消失模铸造水平变截面型腔干砂的充填紧实特性[J]. 铸造, 2003, 52: 412)
[69] Martin C L, Bouvard D, Shima S.Study of particle rearrangement during powder compaction by the discrete element method[J]. J. Mech. Phys. Solids., 2003, 51: 667
[70] He T, Wang C J, Zhang D S.Sand colony motion characteristics during vibration moulding process for epc based on EDEM[J]. Spec. Cast. Nonferrous Alloy, 2013, 33: 542(何涛, 王成军, 张东速. 基于EDEM的EPC干砂造型中的型砂运动特性[J]. 特种铸造及有色合金, 2013, 33: 542)
[71] Wang C J, He T, Han D D, et al.Simulation research on rear supporting legs of entry-driving machine's vibration model based on EDEM[J]. J. Anhui Polyt. Univ., 2014, 29(1): 44(王成军, 何涛, 韩董董等. 基于EDEM的掘进机后支撑腿振动造型模拟研究[J]. 安徽工程大学学报, 2014, 29(1): 44)
[72] Zhang X J, Wu Z M, Zhang F.Simulation of discrete element method for vibration type reclamation of casting used sand[J]. Hot Work. Technol., 2013, 42(13): 44(张希俊, 武智猛, 张方. 铸造旧砂振动再生的离散元法模拟[J]. 热加工工艺, 2013, 42(13): 44)
[73] Zhao J H, Ma Q, Jin T, et al.Experimental investigation of the effect of mechanical vibration on the filling ability of A356 aluminum alloy[J]. J. Funct. Mater., 2014, 45: 15129(赵建华, 马强, 金通等. 机械振动对A356合金充型能力影响的研究[J]. 功能材料, 2014, 45: 15129)
[74] Zhao Z, Fan Z T, Cheng P, et al.Influence of mechanical vibration on the filling capacity of A356 and AZ91D in lost foam casting[J]. J. Huazhong Univ. Sci. Technol.(Nat. Sci. Ed.), 2009, 37: 82(赵忠, 樊自田, 成平等. 机械振动对A356和AZ91D消失模充型的影响[J]. 华中科技大学学报: 自然科学版, 2009, 37: 82)
[75] Zhao J H, Hou Z, Wang Y J.Effect of mechanical vibration on filling ablity of AZ91 magnesium alloy[J]. Mater. Sci. Technol., 2013, 21: 69(赵建华, 侯钊, 王亚军. 机械振动对AZ91镁合金充型能力的影响[J]. 材料科学与工艺, 2013, 21: 69)
[76] Taghavi F, Saghafian H, Kharrazi Y H K. Study on the ability of mechanical vibration for the production of thixotropic microstructure in A356 aluminum alloy[J]. Mater. Des., 2009, 30: 115
[77] Abdul-Karem W, Green N, Al-Raheem K F. Vibration-assisted filling capability in thin wall investment casting[J]. Int. J. Adv. Manuf. Technol., 2012, 61: 873
[78] Jiang F, Feng J M, Wang Y J, et al.Structure optimization of castings based on vibration casting[J]. Foundry Technol., 2014, (1): 90(江帆, 冯均明, 王一军等. 基于振动铸造的铸件结构参数优化[J]. 铸造技术, 2014, (1): 90)
[79] Jiang F, Feng J M, Wang Y J.Processing parameters optimization of vibration casting[J]. Spec. Cast. Nonferrous Alloy, 2014, 34: 580(江帆, 冯均明, 王一军. 振动铸造工艺参数优化[J]. 特种铸造及有色合金, 2014, 34: 580)
[80] Jiang F, Feng J M, Wang Y J.Numerical simulation of liquid flow during filling process in vibration casting[J]. Spec. Cast. Nonfe-rrous Alloy, 2013, 33: 1010(江帆, 冯均明, 王一军. 振动铸造充型过程液体流动的数值模拟[J]. 特种铸造及有色合金, 2013, 33: 1010)
[81] Wang C J, Li L, Liu Q, et al.Numerical simulation of influence of multi-dimensional vibration on molten metal filling[J]. Hot Work. Technol., 2015, 23(44): 80(王成军, 李龙, 刘琼等. 多维振动对金属液充型影响的数值模拟研究[J]. 热加工工艺, 2015, 23(44): 80)
[82] Wang C J, Liu K, Han D D, et al.Influent of multi-dimensional vibration on casting filling process[J]. Spec. Cast. Nonferrous Alloy, 2015, 35: 696(王成军, 刘凯, 韩董董等. 多维振动对铸造充型过程的影响[J]. 特种铸造及有色合金, 2015, 35: 696)
[83] Han Y Z, Liu A M.Research situation and development of vibration stress relief technology[J]. Foundry Technol., 2013, 4: 479(韩衍昭, 刘爱敏. 振动时效技术的研究现状与发展[J]. 铸造技术, 2013, 4: 479)
[84] Dawson R, Moffat D G.Vibratory stress relief: A fundamental study of its effectiveness[J]. J. Eng. Mater. Technol., 1980, 102: 169
[85] Liu A M, Han Y Z.Study on technology parameters of vibration stress relief about castings based on finite element method[J]. Hot Work. Technol., 2012, 41(9): 65(刘爱敏, 韩衍昭. 基于有限元法的铸件振动时效工艺参数研究[J]. 热加工工艺, 2012, 41(9): 65)
[86] Jian J K, Gao Y Y, Zou X, et al.VSR simulation and analysis of weld rectangular sheet[J]. Heat. Treat. Met., 2015, 40: 179(简健昆, 高永毅, 邹曦等. 焊接矩形薄板的振动时效模拟与分析[J]. 金属热处理, 2015, 40: 179)
[87] Kuo J K, Huang P H, Guo M J.Removal of CrMo alloy steel components from investment casting gating system using vibration-excited fatigue failure[J]. Int. J. Adv. Manuf. Technol., 2017, 89: 101
[88] Lyubimov D V, Lyubimova T P, Parshakova Y N, et al.Effect of high-frequency vibrations on oriented crystallization of binary alloys[J]. J. Surf. Invest. X-Ray, Synchrotron Neutron Tech., 2009, 3: 116
[89] Lyubimova T P, Parshakova Y N.Numerical investigation of heat and mass transfer during vertical Bridgman crystal growth under rotational vibrations[J]. J. Cryst. Growth, 2014, 385: 82
[90] Liu Y C, Yu W C, Roux B, et al.Thermal-solutal flows and segregation and their control by angular vibration in vertical Bridgman crystal growth[J]. Chem. Eng. Sci., 2006, 61: 7766
[91] Timelli G, Della Corte E, Bonollo F.Effect of mechanical mould vibration on solidification behaviour and microstructure of A360-SiCp metal-matrix composites [A]. Materials Science Forum[C]. Zürich: Trans Tech Publications, 2011, 678: 105
[92] Guo Z Y.Effect of oscillation on flow field and temperature field during the twin-roll strip casting process [D]. Qinhuangdao: Yanshan University, 2016(郭志远. 双辊薄带振动铸轧数值模拟及实验研究 [D]. 秦皇岛: 燕山大学, 2016)
[93] Monk P.Analysis of a finite element method for Maxwell's equations[J]. SIAM J. Numer. Anal., 1992, 29: 714
[94] Liao X L, Zhai Q J, Luo J, et al.Refining mechanism of the electric current pulse on the solidification structure of pure aluminum[J]. Acta Mater., 2007, 55: 3103
[95] Zhang Y, Ding H, Jiang S, et al.Numerical simulation of electro-magnetic and flow fields of TiAl melt under electric field[J]. China Foundry, 2010, 7: 241
[96] Zhao Z L, Wang J L, Liu L.Grain refinement by pulse electric discharging and undercooling mechanism[J]. Mater. Manuf. Process., 2011, 26: 249
[97] Ma J C, Na X Z.Numerical simulation of the electromagnetic field in molten metal under electric current pulse[J]. J. Iron Steel Res., 2012, 24(1): 10(马静超, 那贤昭. 脉冲电流作用下金属熔体内电磁场分布的数值模拟[J]. 钢铁研究学报, 2012, 24(1): 10)
[98] Li X B, Lu F G, Cui H C, et al.Effect of electric current pulse on flow behaviour of Al melt in parallel electrode process[J]. Mater. Sci. Technol., 2013, 29: 226
[99] Li X B, Lu F G, Cui H C, et al.Migration behavior of solidification nuclei in pure Al melt under effect of electric current pulse[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 192
[100] R?biger D, Zhang Y H, Galindo V, et al.The relevance of melt convection to grain refinement in Al-Si alloys solidified under the impact of electric currents[J]. Acta Mater., 2014, 79: 327
[101] R?biger D, Zhang Y, Galindo V, et al.Experimental study on directional solidification of Al-Si alloys under the influence of electric currents [A]. International Symposium on Liquid Metal Processing & Casting 2015 [C]. IOP Publishing, Leoben, Austria, 2016, 143(1): 012021
[102] Xu Z, Wang X, Liang D, et al.Electric current pulse induced grain refinement in pure aluminium[J]. Mater. Sci. Technol., 2015, 31: 1595
[103] Kolesnichenko A F, Podoltsev A D, Kucheryavaya I N.Action of pulse magnetic field on molten metal[J]. ISIJ Int., 1994, 34: 715
[104] Zi B T, Yao K F, Xu G M, et al.Numerical simulation of liguid alloy flow field during solidification under applied pulsed magnetic fields[J]. Acta Phys. Sin., 2003, 52: 115(訾炳涛, 姚可夫, 许光明等. 脉冲磁场下金属熔体凝固流场的数值模拟[J]. 物理学报, 2003, 52: 115)
[105] Zhang Y J, Hua J S, Wang E G, et al.Numerical analysis of electromagnetic field in the molten steel under pulsed magnetic field[J]. Mater. Sci. Technol., 2010, 18: 639(张永杰, 华骏山, 王恩刚等. 脉冲磁场作用于钢液熔体的电磁场数值模拟[J]. 材料科学与工艺, 2010, 18: 639)
[106] Teng Y F, Li Y J, Feng X H, et al.Effect of rectangle aspect ratio on grain refinement of superalloy K4169 under pulsed magnetic field[J]. Acta Metall. Sin., 2015, 51: 844(滕跃飞, 李应举, 冯小辉等. 脉冲磁场作用下矩形截面宽厚比对 K4169 高温合金晶粒细化的影响[J]. 金属学报, 2015, 51: 844)
[107] Ma X P, Yang Y S, Wang B.Effect of pulsed magnetic field on superalloy melt[J]. Int. J. Heat Mass Transfer, 2009, 52: 5285
[108] Wang B, Yang Y S, Ma X P, et al.Simulation of electromagnetic-flow fields in Mg melt under pulsed magnetic field[J]. Trans. Nonferrous Met. Soc. China, 2010, 20: 283
[109] Li Y J, Teng Y F, Yang Y S.Refinement mechanism of low voltage pulsed magnetic field on solidification structure of silicon steel[J]. Met. Mater. Int., 2014, 20: 527
[110] Ji H M, Luo T J, Yang Y S.Numerical simulation and experimental research of low voltage pulsed magnetic field DC casting of AZ80 magnesium alloy[J]. Chin. J. Nonferrous Met., 2017, 27: 468(冀焕明, 罗天骄, 杨院生. AZ80镁合金低压脉冲磁场半连续铸造过程的数值模拟和实验研究[J]. 中国有色金属学报, 2017, 27: 468)
[111] Li Y J, Ma X P, Yang Y S.Grain refinement of as-cast superalloy IN718 under action of low voltage pulsed magnetic field[J]. Trans. Nonferrous. Met. Soc. China, 2011, 21: 1277
[112] Wu L, Wang T M, Fu Y, et al.Simulation study on continuous casting process of Al/Al bimetal round billet under multi-electromagnetic [A]. IOP Conference Series: Materials Science and EngineeringI [C]. IOP Publishing, Schladming, Austria, 2012, 33(1): 012020
[113] Musaeva D, Ilin V, Baake E, et al.Numerical simulation of the melt flow in an induction crucible furnace driven by a Lorentz force pulsed at low frequency[J]. Magnetohydrodynamics, 2015, 51: 771
[114] Liu F, Zhang L Y.Numerical simulation of magnetic field and flow field distributions during pure aluminum solidification under pulse magneto-oscillation[J]. Foundry, 2012, 61: 285(刘芳, 张璐云. 脉冲磁致振荡下纯铝凝固磁场与流场分布的数值模拟[J]. 铸造, 2012, 61: 285)
[115] Liang D, Liang Z Y, Sun J, et al.Grain refinement of commercial pure Al treated by pulsed magneto-oscillation on the top surface of melt[J]. China Foundry, 2015, 12: 48
[116] Zhao J, Yu J, Li Q, et al.Structure of slowly solidified 30Cr2Ni4MoV casting with surface pulsed magneto-oscillation[J]. Mater. Sci. Technol., 2015, 31: 1589
[117] Zhao J, Cheng Y F, Han K, et al.Numerical and experimental studies of surface-pulsed magneto-oscillation on solidification[J]. J. Mater. Process. Technol., 2016, 229: 286
[118] Liu T Y, Sun J, Sheng C, et al.Influence of pulse magneto-oscillation on the efficiency of grain refiner[J]. Adv. Manuf., 2017, 5: 143
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[5] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[6] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[7] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[8] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[9] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[10] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[11] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[12] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
[13] LU Shijie, WANG Hu, DAI Peiyuan, DENG Dean. Effect of Creep on Prediction Accuracy and Calculating Efficiency of Residual Stress in Post Weld Heat Treatment[J]. 金属学报, 2019, 55(12): 1581-1592.
[14] Jun LI, Mingxu XIA, Qiaodan HU, Jianguo LI. Solutions in Improving Homogeneities of Heavy Ingots[J]. 金属学报, 2018, 54(5): 773-788.
[15] Zheng LIU, Zhiping CHEN, Tao CHEN. Effects of Crucible Size and Electromagnetic Frequency on Flow During Fabrication of Semisolid A356 Al Alloy Slurry[J]. 金属学报, 2018, 54(3): 435-442.
No Suggested Reading articles found!