Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 174-192    DOI: 10.11900/0412.1961.2017.00418
Orginal Article Current Issue | Archive | Adv Search |
Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys
Shoumei XIONG1,2(), Jinglian DU1, Zhipeng GUO1, Manhong YANG1, Mengwu WU1, Cheng BI1, Yongyou CAO1
1 School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
2 Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China
Cite this article: 

Shoumei XIONG, Jinglian DU, Zhipeng GUO, Manhong YANG, Mengwu WU, Cheng BI, Yongyou CAO. Characterization and Modeling Study on Interfacial Heat Transfer Behavior and Solidified Microstructure of Die Cast Magnesium Alloys. Acta Metall Sin, 2018, 54(2): 174-192.

Download:  HTML  PDF(16999KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Magnesium alloys are widely used in various fields because of their outstanding properties. High-pressure die casting (HPDC) is one of the primary manufacturing methods of magnesium alloys. During the HPDC process, the solidification manner of casting is highly dependent on the heat transfer behavior at metal-die interface, which directly affects the solidified microstructure evolution, defect distribution and mechanical properties of the cast products. As common solidified microstructures of die cast magnesium alloys, the externally solidified crystals (ESCs), divorced eutectics and primary dendrites have important influences on the final performance of castings. Therefore, investigations on the interfacial heat transfer behavior and the solidified microstructures of magnesium alloys have considerable significance on the optimization of die-casting process and the prediction of casting quality. In this paper, recent research progress on theoretical simulation and experimental characterization of the heat transfer behaviors and the solidified microstructures of die cast magnesium alloys was systematically presented. The contents include:(1) A boundary-condition model developed based on the interfacial heat transfer coefficients (IHTCs), which could precisely simulate the boundary condition at the metal-die interface during solidification process. Accordingly, the IHTCs can be divided into four stages, namely the initial increasing stage, the high value maintaining stage, the fast decreasing stage and the low value maintaining stage. (2) A numerical model developed to simulate and predict the flow patterns of the externally solidified crystals (ESCs) in the shot sleeve during mold filling process, together with discussion on the influence of the ESCs distribution on the defect bands of die cast magnesium alloys. (3) Nucleation and growth models of the primary α-Mg phases developed by considering the ESCs in the shot sleeve. (4) Nucleation and growth models of the divorced eutectic phase, which can be used to simulate the microstructure evolution of die cast magnesium alloys. (5) The 3D morphology and orientation selection of magnesium alloy dendrite. It was found that magnesium alloy dendrite exhibits an eighteen-primary branch pattern in 3D, with six growing along <112?0> in the basal plane and the other twelve along <112?3> in non-basal planes. Accordingly, an anisotropy growth function was developed and coupled into the phase field model to achieve the 3D simulation of magnesium alloy dendrite.

Key words:  magnesium alloy      high pressure die casting      interfacial heat transfer      solidified microstructure     
Received:  09 October 2017     
Fund: Supported by National Key Research and Development Program of China (No.2016YFB0301001), National Natural Science Foundation of China (No.51701104) and China Postdoctoral Science Foundation (No.2017M610884)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00418     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/174

Fig.1  The size, geometry and actual casting of step shape (a, b) and finger shape (c, d) castings (unit: mm)[12]
Fig.2  Configuration and boundary conditions of shot sleeve (P—symmetrical plane, q—heat density, F—symmetric line, Δx—spatial step along the x direction, x and z—coordinate axis, respectively)[57]
(a) cross section (b) longitudinal section (c) heat transfer model
Material λc
Wm-1-1
ρ
kgm-3
cp
Jkg-1-1
TL
TS
Lcr
Jkg-1
AM50 62 1780 1050 628 546 373000
ADC12 92 2700 963 587 531 389000
H13 31.2-0.013 T 7730-0.24 T 478-0.219 T 1471 1404 209350
Table 1  Thermal physical parameters of the materials[16,17,18,19,20]
Fig.3  Variation correlation between solid phase fraction (fs) and h [20] (hmax is the peak value of IHTC, h0 is the initial value of IHTC; while, kh-f, fs0, fsc, fde, hde, hsolid and ε are the fitting parameters; Pc, Ps and P0 are the demarcation points of the four stages, which correspond to the points with the maximum IHTC, the spacing IHTC and the final stable IHTC)
Fig.4  The interfacial heat transfer coefficient (h) of A380 alloy (a) and AZ91D alloy (b) in single cycle at the different locations of chamber under normal die casting condition[1] (t—time)
Fig.5  Optical micrograph of typical AM50 microstructure at the surface and central regions of the 'step shape' die-casting (a), area fraction distributions of externally solidified crystals (ESCs) over cross section of the five steps (b), and the step 4 (c) on the 'step shape’ die casting [44] (Tp is the casting temperature and Vs is the low speed velocity)
Fig.6  Particle distributions on the cross sections of the tensile bars with semi-circle ingate at filling percentage of 37% (a), 45% (b) and 55% (c), and for the tensile bars with circle ingate at filling percentage of 44% (d), 63% (e) and 81% (f) [45] (n—content of ESCs)
Parameter Value Unit
Eutectic temperature (TE) 710 K
Eutectic composition (CE) 32.3 Mass fraction, %
Solute concentration of α phase (Cα0) 12.7 Mass fraction, %
Solute concentration of β phase (Cβ0) 40.2 Mass fraction, %
Volume fraction of α phase (fα) 0.31
Volume fraction of β phase (fβ) 0.69
Liquid slope of α phase (mα) -6.59 K%-1 (mass fraction)
Liquid slope of β phase (mβ) 2.15 K%-1 (mass fraction)
Solute diffusion coefficient in liquid (DL) 3×10-9 m2s-1
Gibbs-Thamson's coefficient of α phase (Γα) 1.5×10-7 mK
Gibbs-Thamson's coefficient of β phase (Γβ) 1.5×10-7 mK
Table 2  Thermal physical parameters of Mg-Al eutectic alloy[50,53]
Fig.7  Comparison of the the microstructure evolution at the central of magnesium alloy die castings (AM60B)[50]
(a, b) the modeling results (c) the experimental result
Fig.8  Dendrites of AZ91 alloy casting (a, b), microstructures of Mg-30%Gd alloys in as casting state (c, d)(The dendrites are with different growth patterns, such as six-branches, five-branches, four-branches and butterfly shape symbolled as No.1 to No.5, respectively)
Fig.9  3D reconstructed dendrites extracted for the Mg-30%Sn (a, b) and Mg-30%Gd (c, d) alloys, and a dendrite of Mg-30%Sn alloy viewed from different perspectives (e, f) (A1~A6 and B1~B4 are used to indicate the preferred growth directions of the dendrite)[33]
Fig.10  EBSD analyses on the preferred growth directions of the Mg-30%Gd alloy dendrite[33]: dendritic morphology and the according (0001) orientation (a, b) while those for (033?1) (c, d), and pole distributions with respect to the <112?3> for thirty dendrite (e)
Fig.11  Comparison of the dendritic morphologies between phase field simulation (a) and X-ray tomography experiment (b). Dendritic morphologies with respect to four different view directions including <0001>, <112?0>, <101?0> and <112?3> are shown in Figs.11c~f for simulation and Figs.11g~j for experiment, respectively[29]
Fig.12  Atomic densities (a) and inter-planar distances (b) of Mg low index crystallographic planes, and the pyramidal planes for the <112?0> and <112?3> growth directions (c)[33] (The correpsonding a and c, donote the lattice parameters of Mg)
Fig.13  The surface energies of low index planes (a) and high index planes (b) of pure Mg by four different potentials[39], the correlation for <112?x>{112?e} (c), the according morphologies in the basal and non-basal plane (d), and the surface energies of low index planes (e) and high index planes (f) of Mg and its alloys by PAW-LDA potentials (PAW, USPP, GGA and LDA are abbreviations of the projector-augmented wave, the ultra-soft pseudo-potential, the generalized gradient approximation and the local density approximation, respectively)[39,40]
[1] Yu W B, Cao Y Y, Li X B, et al.Determination of interfacial heat transfer behavior at the metal/shot sleeve of high pressure die casting process of AZ91D alloy[J]. J. Mater. Sci. Technol., 2017, 33: 52
[2] Yang W C, Liu L, Zhang J, et al.Insight into the partial solutionisation of a high pressure die-cast Al-Mg-Zn-Si alloy for mechanical property enhancement[J]. Mater. Sci. Eng., 2017, A682: 85
[3] Bi C, Guo Z P, Xiong S M.Modelling and simulation for die casting mould filling process using Cartesian cut cell approach[J]. Int. J. Cast. Metall. Res., 2015, 28: 234
[4] Wang Q L, Xiong S M.Vacuum assisted high-pressure die casting of AZ91D magnesium alloy at different slow shot speeds[J]. Trans. Nonferrous Met. Soc., 2014, 24: 3051
[5] Liu B C, Xiong S M.High pressure die casting process of magnesium alloys and its modeling and simulation for automobile industry[J]. J. Automot. Safety Energy, 2011, 2(1): 1(柳百成, 熊守美. 汽车工业镁合金压铸成形技术及模拟仿真[J]. 汽车安全与节能学报, 2011, 2(1): 1)
[6] Xu N, Bao Y F, Shen J.Enhanced strength and ductility of high pressure die casting AZ91D Mg alloy by using cold source assistant friction stir processing[J]. Mater. Lett., 2017, 190: 24
[7] Yu W B, Cao Y Y, Guo Z P, et al.Development and application of inverse heat transfer model between liquid metal and shot sleeve in high pressure die casting process under non-shooting condition[J]. China Foundry, 2016, 13: 269
[8] Xiong S S, Su S F.Research progress on processing technology of magnesium alloys[J]. Foundry, 2005, 54(1): 20(熊守美, 苏仕方. 镁合金成形技术研究进展[J]. 铸造, 2005, 54(1): 20)
[9] Guan R G, Cipriano A F, Zhao Z Y, et al.Development and evaluation of a magnesium-zinc-strontium alloy for biomedical applications-alloy processing, microstructure, mechanical properties, and biodegradation[J]. Mater. Sci. Eng., 2013, C33: 3661
[10] Guo Z P, Xiong S M, Li M, et al.Relationship between metal-die interfacial heat transfer coefficient and casting solidification rate in high pressure die casting process[J]. Acta Metall. Sin., 2009, 45: 102(郭志鹏, 熊守美, 李梅等. 压铸过程中铸件-铸型界面换热系数与铸件凝固速率的关系[J]. 金属学报, 2009, 45: 102)
[11] Guo Z P, Xiong S M, Cao S X, et al.Effects of alloy materials and process parameters on the heat transfer coefficient at metal/die interface in high pressure die casting[J]. Acta Metall. Sin., 2008, 44: 433(郭志鹏, 熊守美, 曹尚铉等. 合金材料以及工艺参数对压铸过程中铸件/铸型界面换热系数的影响[J]. 金属学报, 2008, 44: 433)
[12] Cao Y Y, Guo Z P, Xiong S M.Determination of interfacial heat transfer coefficient and its application in high pressure die casting process[J]. China Foundry, 2014, 11: 314
[13] Jia L R, Xiong S M, Liu B B.Study on numerical simulation of mold filling and heat transfer in die casting process[J]. J. Mater. Sci. Technol., 2000, 18: 269
[14] Guo Z P, Xiong S M, Cho S, et al.Interfacial heat transfer coefficient between metal and die during high pressure die casting process of aluminum alloy[J]. Front. Mech. Eng. China, 2007, 2: 283
[15] Guo Z P, Xiong S M, Liu B C, et al.Understanding of the influence of process parameters on the heat transfer behavior at the metal/die interface in high pressure die casting process[J]. Sci. China, 2009, 52E: 172
[16] Guo Z P, Xiong S M, Cho S, et al.Heat transfer between casting and die during high pressure die casting process of AM50 alloy-modeling and experimental results[J]. J. Mater. Sci. Technol., 2008, 24: 131
[17] Guo Z P, Xiong S M, Murakami M, et al.Study on interfacial heat transfer coefficient at metal/die interface during high pressure die casting process of AZ91D alloy[J]. China Foundry, 2007, 4: 5
[18] Guo Z P, Xiong S M, Cho S, et al. Influence of processing parameters on interfacial heat transfer coefficient at the metal-die interface of die cast AM50 alloy [J]. Mater. Sci. Forum, 2007, 561-565: 1007
[19] Guo Z P, Xiong S M, Liu B C, et al.Effect of process parameters, casting thickness, and alloys on the interfacial heat-transfer coefficient in the high-pressure die-casting process[J]. Metall. Mater. Trans., 2008, 39A: 2896
[20] Guo Z P, Xiong S M, Liu B C, et al.Determination of the heat transfer coefficient at metal-die interface of high pressure die casting process of AM50 alloy[J]. Int. J. Heat Mass Transer, 2008, 51: 6032
[21] Sandl?bes S, Friák M, Zaefferer S, et al.The relation between ductility and stacking fault energies in Mg and Mg-Y alloys[J]. Acta Mater., 2012, 60: 3011
[22] Sandl?bes S, Pei Z, Friák M, et al.Ductility improvement of Mg alloys by solid solution: Ab initio modeling, synthesis and mechanical properties[J]. Acta Mater., 2014, 70: 92
[23] B?ttger B, Eiken J, Ohno M, et al.Controlling microstructure in magnesium alloys: A combined thermodynamic, experimental and simulation approach[J]. Adv. Eng. Mater., 2006, 8: 241
[24] Xiong S M, Liu B C.Study on numerical simulation of mold-filling and solidification processes of shaped casting[J]. Chin. J. Mech. Eng., 1999, 1: 4
[25] Kleiner S, Beffort O, Wahlen A, et al.Microstructure and mechanical properties of squeeze cast and semi-solid cast Mg-Al alloys[J]. J. Light Met., 2002, 2: 277
[26] Pettersen K, Lohne O, Ryum N.Dendritic solidification of magnesium alloy AZ91[J]. Metall. Trans., 1990, 21A: 221
[27] Cai B, Wang J, Kao A, et al.4D synchrotron X-ray tomographic quantification of the transition from cellular to dendrite growth during directional solidification[J]. Acta Mater., 2016, 117: 160
[28] Nestler B, Garcke H, Stinner B.Multicomponent alloy solidification: Phase-field modeling and simulations[J]. Phys. Rev. 2005, 71E: 041609
[29] Yang M H, Xiong S M, Guo Z P.Effect of different solute additions on dendrite morphology and orientation selection in cast binary magnesium alloys[J]. Acta Mater., 2016, 112: 261
[30] Lu K.Stabilizing nanostructures in metals using grain and twin boundary architectures[J]. Nat. Rev. Mater., 2016, 1: 16019
[31] Wang M Y, Xu Y J, Zheng Q W, et al.Dendritic growth in mg-based alloys: Phase-field simulations and experimental verification by X-ray synchrotron tomography[J]. Metall. Mater. Trans., 2014, 45A: 2562
[32] Shuai S S, Guo E Y, Phillion A B, et al.Fast synchrotron X-ray tomographic quantification of dendrite evolution during the solidification of MgSn alloys[J]. Acta Mater., 2016, 118: 260
[33] Yang M H, Xiong S M, Guo Z P.Characterisation of the 3-D dendrite morphology of magnesium alloys using synchrotron X-ray tomography and 3-D phase-field modelling[J]. Acta Mater., 2015, 92: 8
[34] Wu M W, Xiong S M.A three-dimensional cellular automaton model for simulation of dendritic growth of magnesium alloy[J]. Acta Metall. Sin.(Eng. Lett.), 2012, 25: 169
[35] Nie J F, Oh-ishi K, Gao X, et al. Solute segregation and precipitation in a creep-resistant Mg-Gd-Zn alloy[J]. Acta Mater., 2008, 56: 6061
[36] Casari D, Mirihanage W U, Falch K V, et al.α-Mg primary phase formation and dendritic morphology transition in solidification of a Mg-Nd-Gd-Zn-Zr casting alloy[J]. Acta Mater., 2016, 116: 177
[37] Guo E Y, Phillion A B, Cai B, et al.Dendritic evolution during coarsening of Mg-Zn alloys via 4D synchrotron tomography[J]. Acta Mater., 2017, 123: 373
[38] Xu Q Y, Feng W M, Liu B C, et al.Numerical simulation of dendrite growth of aluminum alloy[J]. Acta Metall. Sin., 2002, 38: 799(许庆彦, 冯伟明, 柳百成等. 铝合金枝晶生长的数值模拟[J]. 金属学报, 2002, 38: 799)
[39] Du J L, Guo Z P, Yang M H, et al.Growth pattern and orientation selection of magnesium alloy dendrite: From 3-D experimental characterization to theoretical atomistic simulation[J]. Mater. Today Commu., 2017, 13: 155
[40] Du J L, Guo Z P, Zhang A, et al.Correlation between crystallographic anisotropy and dendritic orientation selection of binary magnesium alloys[J]. Sci. Rep., 2017, 7: 13600
[41] Du J L, Guo Z P, Yang M H, et al.Multiscale simulation of α-Mg dendrite growth via 3D phase field modeling and ab-initio first-principle calculations [A]. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering[C]. Cham: Springer, 2017: 263
[42] Li X B, Xiong S M, Guo Z P.On the porosity induced by externally solidified crystals in high-pressure die-cast of AM60B alloy and its effect on crack initiation and propagation[J]. Mater. Sci. Eng., 2015, A633: 35
[43] Wu M W, Xiong S M.Microstructure characteristics of high pressure die cast AM60B magnesium alloy[J]. Rare Met. Mater. Eng., 2012, 41: 1580(吴孟武, 熊守美. 压铸镁合金AM60B的微观组织特征[J]. 稀有金属材料与工程, 2012, 41: 1580)
[44] Wu M W, Xiong S M.Experimental and modeling studies on the structure formation of high pressure die cast magnesium alloy considering the externally solidified crystals in the shot sleeve[J]. Acta Metall. Sin., 2011, 47: 528(吴孟武, 熊守美. 考虑压室预结晶的镁合金压铸组织实验及模拟研究[J]. 金属学报, 2011, 47: 528)
[45] Bi C, Xiong S M, Li X B, et al.Development of a fluid-particle model in simulating the motion of external solidified crystals and the evolution of defect bands in high-pressure die casting[J]. Metall. Mater. Trans., 2016, 47B: 939
[46] Li X B, Xiong S M, Guo Z P.On the tensile failure induced by defect band in high pressure die casting of AM60B magnesium alloy[J]. Mater. Sci. Eng., 2016, A674: 687
[47] Li X B, Xiong S M, Guo Z P.Improved mechanical properties in vacuum-assist high-pressure die casting of AZ91D alloy[J]. J. Mater. Sci. Technol., 2016, 231: 1
[48] Li X B, Xiong S M, Guo Z P.Correlation between porosity and fracture mechanism in high pressure die casting of AM60B Alloy[J]. J. Mater. Sci. Technol., 2016, 32: 54
[49] Wang B S, Xiong S M.Effects of shot speed and biscuit thickness on externaly solidified crystals of high-pressure diet cast AM60B magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 767
[50] Wu M W, Xiong S M.Modeling of regular eutectic growth of binary alloy basedon cellular automaton method[J]. Acta Phys. Sin., 2011, 60: 058103(吴孟武, 熊守美. 采用元胞自动机法模拟二元规则共晶生长[J]. 物理学报, 2011, 60: 058103)
[51] Zhang A, Guo Z P, Xiong S M.Eutectic pattern transition under different temperature gradients: A phase field study coupled with the parallel adaptive-mesh-refinement algorithm[J]. J. Appl. Phys., 2017, 121: 125101
[52] Xiong S M, Wu M W.Experimental and modeling studies of the lamellar eutectic growth of Mg-Al alloy[J]. Metall. Mater. Trans., 2011, 43A: 208
[53] Wu M W, Xiong S M.Microstructure characteristics of the eutectics of die cast AM60B magnesium alloy[J]. J. Mater. Sci. Technol., 2011, 27: 1150
[54] Zhang A, Guo Z P, Xiong S M.Phase-field-lattice Boltzmann study for lamellar eutectic growth in a natural convection melt[J]. China Foundry, 2017, 14: 373
[55] Guo Z P, Xiong S M, Cao S X, et al.Development of an inverse heat transfer model and its application in the prediction of the interfacial heat flux[J]. Acta Metall. Sin., 2007, 43: 607(郭志鹏, 熊守美, 曹尚铉等. 热传导反算模型的建立及其在求解界面热流过程中的应用[J]. 金属学报, 2007, 43: 607)
[56] Guo Z P, Xiong S M, Cao S X, et al.Study of interfacial heat transfer coefficient between metal and die during high pressure die casting process of aluminum alloy ADC12Z[J]. Acta Metall. Sin., 2007, 43: 103(郭志鹏, 熊守美, 曹尚铉等. 铝合金ADC12Z高压铸造过程中铸件与铸型间界面热交换系数的研究[J]. 金属学报, 2007, 43: 103)
[57] Cao Y Y, Xiong S M, Guo Z P.Development of an inverse heat transfer model between melt and shot sleeve and its application in high pressure die casting process[J]. Acta Metall. Sin., 2015, 51: 745(曹永友, 熊守美, 郭志鹏. 压铸压室内部界面传热反算模型的建立和应用[J]. 金属学报, 2015, 51: 745)
[58] Guo Z P, Xiong S M, Cao S X, et al.Study on heat transfer behavior at metal/die interface in aluminum alloy die casting process I. Experimental study and determination of the interfacial heat transfer coefficient[J]. Acta Metall. Sin., 2007, 43: 1149(郭志鹏, 熊守美, 曹尚铉等. 铝合金压铸过程铸件/铸型界面换热行为的研究I.实验研究和界面换热系数求[J]. 金属学报, 2007, 43: 1149)
[59] Zhang A, Liang S, Guo Z P, et al.Determination of the interfacial heat transfer coefficient at the metal-sand mold interface in low pressure sand casting[J]. Exp. Therm. Fluid Sci., 2017, 88: 472
[60] Cao Y Y, Guo Z P, Xiong S M.Determination of the metal/die interfacial heat transfer coefficient of high pressure die cast B390 alloy[J]. IOP Conference Series: Mater. Sci. Eng., 2012, 33: 012010
[61] Wu M W, Xiong S M.Microstructure simulation of high pressure die cast magnesium alloy based on modified CA method[J]. Acta Metall. Sin., 2010, 46: 1534(吴孟武, 熊守美. 基于改进CA方法的压铸镁合金微观组织模拟[J]. 金属学报, 2010, 46: 1534)
[62] Sun D Y, Mendelev M I, Becker C A, et al.Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of Mg[J]. Phys. Rev., 2006, 73B: 024116
[63] Wu M W, Xiong S M.Modeling of equiaxed and columnar dendritic growth of magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 2212
[64] Akamatsu S, Bottin-Rousseau S, Faivre G.Determination of the Jackson-Hunt constants of the In-In2Bi eutectic alloy based on in situ observation of its solidification dynamics[J]. Acta Mater., 2011, 59: 7586
[65] Ludwig A, Leibbrandt S. Generalised 'Jackson-Hunt' model for eutectic solidification at low and large Peclet numbers and any binary eutectic phase diagram [J]. Mater. Sci. Eng., 2004, A375-377: 540
[66] Zheng L L, Larson Jr.D J, Zhang H. Revised form of Jackson-Hunt theory: Application to directional solidification of MnBi/Bi eutectics[J]. J Cryst. Growth, 2000, 209: 121
[67] Guo Z P, Mi J, Xiong S M, et al.Phase Field simulation of binary alloy dendrite growth under thermal- and forced-flow fields: An implementation of the parallel-multigrid approach[J]. Metall. Mater. Trans., 2013, 44B: 924
[68] Guo Z P, Xiong S M.On solving the 3-D phase field equations by employing a parallel-adaptive mesh refinement (Para-AMR) algorithm[J]. Comput. Phys. Commun., 2015, 190: 89
[69] Chadwick G A.A hard-sphere model of crystal growth[J]. Metal Sci. J., 1967, 1: 132
[70] Van Der Planken J, Deruyttere A. A scanning electron microscope study of vapour grown magnesium[J]. J Cryst. Growth, 1971, 11: 273
[71] Donnay J D H, Harker D. A new law of crystal morphology extending the law of bravais[J]. J. Miner. Soc. Am., 1938, 22: 446
[72] Tang S, Wang Z J, Guo Y L, et al.Orientation selection process during the early stage of cubic dendrite growth: A phase-field crystal study[J]. Acta Mater., 2012, 60: 5501
[73] Wang K L, Pei P C, Ma Z, et al.Dendrite growth in the recharging process of zinc-air batteries[J]. J. Mater. Chem., 2015, 3A: 22648
[1] SHAO Xiaohong, PENG Zhenzhen, JIN Qianqian, MA Xiuliang. Unravelling the {101¯2} Twin Intersection Between LPSO Structure/SFs in Magnesium Alloy[J]. 金属学报, 2023, 59(4): 556-566.
[2] ZHU Yunpeng, QIN Jiayu, WANG Jinhui, MA Hongbin, JIN Peipeng, LI Peijie. Microstructure and Properties of AZ61 Ultra-Fine Grained Magnesium Alloy Prepared by Mechanical Milling and Powder Metallurgy Processing[J]. 金属学报, 2023, 59(2): 257-266.
[3] TANG Weineng, MO Ning, HOU Juan. Research Progress of Additively Manufactured Magnesium Alloys: A Review[J]. 金属学报, 2023, 59(2): 205-225.
[4] CHEN Yang, MAO Pingli, LIU Zheng, WANG Zhi, CAO Gengsheng. Detwinning Behaviors and Dynamic Mechanical Properties of Precompressed AZ31 Magnesium Alloy Subjected to High Strain Rates Impact[J]. 金属学报, 2022, 58(5): 660-672.
[5] ZENG Xiaoqin, WANG Jie, YING Tao, DING Wenjiang. Recent Progress on Thermal Conductivity of Magnesium and Its Alloys[J]. 金属学报, 2022, 58(4): 400-411.
[6] LI Shaojie, JIN Jianfeng, SONG Yuhao, WANG Mingtao, TANG Shuai, ZONG Yaping, QIN Gaowu. Multimodal Microstructure of Mg-Gd-Y Alloy Through an Integrated Simulation of Process-Structure-Property[J]. 金属学报, 2022, 58(1): 114-128.
[7] WANG Huiyuan, XIA Nan, BU Ruyu, WANG Cheng, ZHA Min, YANG Zhizheng. Current Research and Future Prospect on Low-Alloyed High-Performance Wrought Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1429-1437.
[8] PAN Fusheng, JIANG Bin. Development and Application of Plastic Processing Technologies of Magnesium Alloys[J]. 金属学报, 2021, 57(11): 1362-1379.
[9] WANG Xuemei, YIN Zhengzheng, YU Xiaotong, ZOU Yuhong, ZENG Rongchang. Comparison of Corrosion Resistance of Phenylalanine, Methionine, and Asparagine-Induced Ca-P Coatings on AZ31 Magnesium Alloys[J]. 金属学报, 2021, 57(10): 1258-1271.
[10] ZHANG Yang, SHAO Jianbo, CHEN Tao, LIU Chuming, CHEN Zhiyong. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy During Multi-Directional Forging[J]. 金属学报, 2020, 56(5): 723-735.
[11] Rongchang ZENG, Lanyue CUI, Wei KE. Biomedical Magnesium Alloys: Composition, Microstructure and Corrosion[J]. 金属学报, 2018, 54(9): 1215-1235.
[12] Yanyu LIU, Pingli MAO, Zheng LIU, Feng WANG, Zhi WANG. Theoretical Calculation of Schmid Factor and Its Application Under High Strain Rate Deformation in Magnesium Alloys[J]. 金属学报, 2018, 54(6): 950-958.
[13] Guohua WU, Yushi CHEN, Wenjiang DING. Current Research and Future Prospect on Microstructures Controlling of High Performance Magnesium Alloys During Solidification[J]. 金属学报, 2018, 54(5): 637-646.
[14] Xudong LI, Pingli MAO, Yanyu LIU, Zheng LIU, Zhi WANG, Feng WANG. Anisotropy and Deformation Mechanisms ofAs-Extruded Mg-3Zn-1Y Magnesium AlloyUnder High Strain Rates[J]. 金属学报, 2018, 54(4): 557-565.
[15] Guangming XIE, Zongyi MA, Peng XUE, Zongan LUO, Guodong WANG. Effects of Tool Rotation Rates on Superplastic Deformation Behavior of Friction Stir Processed Mg-Zn-Y-Zr Alloy[J]. 金属学报, 2018, 54(12): 1745-1755.
No Suggested Reading articles found!