Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 314-324    DOI: 10.11900/0412.1961.2017.00351
Orginal Article Current Issue | Archive | Adv Search |
Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process
Xiaoyu CHONG1,2, Guangchi WANG1,2, Jun DU3, Yehua JIANG1,2(), Jing FENG1,2
1 School of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 National Engineering Laboratory of Advanced Metal Solidification/Forming and Technology of Equipment, Kunming University of Science and Technology, Kunming 650093, China
3 Technology Center, Magang (Group) Holding Co., Ltd., Ma'anshan 243000, China
Cite this article: 

Xiaoyu CHONG, Guangchi WANG, Jun DU, Yehua JIANG, Jing FENG. Numerical Simulation of Temperature Field and Thermal Stress in ZTAp/HCCI Composites DuringSolidification Process. Acta Metall Sin, 2018, 54(2): 314-324.

Download:  HTML  PDF(6993KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

As advanced wear-resistant materials, it is important to promote the process and application of high chromium cast iron (HCCI) matrix composite reinforced by zirconia toughened alumina ceramic particles (ZTAp/HCCI composite). For the purpose of wider applications of this kind of composite, it is urgent to optimize the process parameters of casting process for it. Based on the finite element software the temperature field and thermal stress in ZTAp/HCCI composite during casting process were simulated. The temperature fields of castings are investigated using the uniform initial temperature and the non-uniform initial temperature at the beginning of solidification. It is more appropriate to the actual situation at the end of mold filling process when the initial temperature of solidification is considered as an unstable temperature field. The influence from performs with different honeycomb shapes is considered in the calculations of temperature fields of castings. In this work, the thermo-elastic plastic model was used to accurately describe the thermal stress in the castings with different honeycomb shapes of preforms, and the results indicate that the thermal stress in them decreases with the increase of edge number of holes in preforms. Finally, the hot crack in castings is predicted and the shakeout process is optimized. It is concluded that the simulated results are in good agreement with the experimental results.

Key words:  ZTAp/HCCI composite      heat transfer      temperature field      thermal stress      numerical simulation     
Received:  24 August 2017     
Fund: Supported by National Natural Science Foundation of China (Nos.51571103 and 51561018)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00351     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/314

Fig.1  The actual castings of a high chromium cast iron (HCCI) matrix composite reinforced by zirconia toughened alumina (ZTA) ceramic particles (ZTAp/HCCI) (a) and a preform of ZTA ceramic particles (b)
Fig.2  The entity solid model of ZTAp/HCCI composites designed according to the real casting conditions
Fig.3  Schematics of preforms with different honeycomb shapes(a) regular triangle hole(b) square hole(c) regular pentagon hole(d) regular hexagon hole(e) circle hole
Temperature / ℃ E / GPa ν α / (10-5-1)
25 205 0.291 0
400 179 0.305 1.295
700 140 0.316 1.386
1000 108 0.345 1.309
1300 0 0.500 2.370
1570 0 0.500 2.675
Table 1  Mechanical properties of high chromium cast iron at different temperatures
Temperature / ℃ E / GPa ν α / (10-5-1)
25 3.00 0.245 0
700 2.95 0.248 0.90
1300 2.82 0.252 0.91
1570 2.75 0.258 0.92
Table 2  Mechanical properties of ZTA performs
Fig.4  Temperature field changes of casting sections containing performs with time (t)(a) t=0.588 s (b) t=1.708 s (c) t=3.811 s (d) t=5.805 s (e) t=8.179 s (f) t=11.339 s
Fig.5  Overall temperature distribution in pouring system after fully filling
Fig.6  Convection coef?cient between inner surface of sand mould and casting
Fig.7  Temperature ?elds of solidification at 20 s (a, b), 311 s (c, d), 1211 s (e, f) 2411 s (g, h), 3600 s (i, j) and 7200 (k, l) under uniform initial temperature (a, c, e, g, i, k) and non-uniform initial temperture (b, d, f, h, j, l)
Fig.8  Temperature fields of casting including performs with regular triangle hole (a~c), square hole (d~f), regular pentagon hole (g~i), regular hexagon hole (j~l) and circle hole (m~o) at 2 s (a, d, g, j, m), 600 s (b, e, h, k, n) and 18000 s (c, f, i, l, o) under non-uniform initial temperatures
Fig.9  Distribution of temperature in sand mould
Fig.10  Influence of preform's shape on casting thermal stress
Fig.11  Temperature field in casting at 14400 s (a) and cracks in actual casting (b)
Fig.12  Thermal stress fields in preforms included in casting at different time after casting shakeout(a) t=7200 s (b) t=9000 s(c) t=12600 s (d) t=14400 s
[1] Tang S L, Gao Y M, Li Y F, et al.Preparation and interface investigation of Fe/Al2O3P composite activated by Ni and Ti[J]. Adv. Eng. Mater., 2016, 18: 1913
[2] Zhou M J, Jiang Y H, Chong X Y. Interface transition layer interaction mechanism for ZTAP/HCCI composites [J]. Sci. Eng. Compos. Mater., 2017.
[3] Zhao S M, Zhang X M, Zheng K H, et al.Fabrication of ZTA/high chromium cast iron matrix composites and its abrasive wear resistant[J]. J. Foundry Technol., 2011, 32: 1673(赵散梅, 张新明, 郑开宏等. ZTA/高铬铸铁基复合材料的制备及磨损性能研究[J]. 铸造技术, 2011, 32: 1673)
[4] Fu X J, Liao D M, Zhou J X, et al.Bidirectional coupled simulation for casting thermal stress based on ANSYS[J]. J. Casting, 2011, 60: 1103(傅显钧, 廖敦明, 周建新等. 基于ANSYS的铸造过程热应力双向耦合模拟[J]. 铸造, 2011, 60: 1103)
[5] Sun L Y.Numerical simulation of casting thermal stress based on ANSYS and inte CAST [D]. Wuhan: Huazhong University of Science and Technology, 2013(孙凌宇. 基于华铸CAE/ANSYS数值模拟集成系统的铸造热应力分析 [D]. 武汉: 华中科技大学, 2013)
[6] Jiao Y N, Liu B C.Simulation of metal solidification using a coupling macroscopic heat transfer and Monte Carlo method [A]. The 5th Asian Foundry Conference[C]. Nanjing, 1998, 5: 11
[7] Shi D L, Zhu J X.Numerical simulation of stress in quenching-cool process[J]. Hot Work Technol., 2007, 36: 79(史东丽, 朱菊香. 淬火过程应力场的计算机模拟[J]. 热加工工艺, 2007, 36: 79)
[8] Liu Y, Qin S W, Zuo X W, et al.Finite element simulation and experimental verification of quenching stress in fully through-hardened cylinders[J]. Acta Metall. Sin., 2017, 53: 733(刘玉, 秦盛伟, 左训伟等. 全淬透圆柱件淬火应力的有限元模拟及实验验证[J]. 金属学报, 2017, 53: 733)
[9] Deng D A, Zhang Y B, Li S, et al.Influence of solid-state phase transformation on residual stress in P92 steel welded joint[J]. Acta Metall. Sin., 2016, 52: 394(邓德安, 张彦斌, 李索等. 固态相变对P92钢焊接接头残余应力的影响[J]. 金属学报, 2016, 52: 394)
[10] Wang X, Hu L, Chen D X, et al.Effect of martensitic transformation on stress evolution in multi-pass butt-welded 9%Cr heat-resistant steel pipes[J]. Acta Metall. Sin., 2017, 53: 888(王学, 胡磊, 陈东旭等. 马氏体相变对9%Cr热强钢管道多道焊接头残余应力演化的影响[J]. 金属学报, 2017, 53: 888)
[11] Li Q, Wang Z X, Xie S Y.Research on the development of mathematical model of the whole process of electroslag remelting and the process simulation[J]. Acta Metall. Sin., 2017, 53: 494(李青, 王资兴, 谢树元. 电渣重熔全过程的数学模型开发及过程模拟研究[J]. 金属学报, 2017, 53: 494)
[12] Han S W, Shi D Q, Yang X G, et al.Computational study on microstructure-sensitive high cycle fatigue dispersivity[J]. Acta Metall. Sin., 2016, 52: 289(韩世伟, 石多奇, 杨晓光等. 微结构相关的高循环疲劳分散性计算方法研究[J]. 金属学报, 2016, 52: 289)
[13] Giunta G, De Pietro G, Nasser H, et al.Carrera E, Petrolo M. A thermal stress finite element analysis of beam structures by hierarchical modeling[J]. Composites, 2016, 95B: 179
[14] Liu P F, Gu Z P, Yang Y H, et al.A nonlocal finite element model for progressive failure analysis of composite laminates[J]. Compos.: Eng., 2016, 86B: 178
[15] Sun Z, Shi S S, Guo X, et al.On compressive properties of composite sandwich structures with grid reinforced honeycomb core[J]. Composites, 2016, 94B: 245
[16] Gu DD, He B B.Finite element simulation and experimental investigation of residual stresses in selective laser melted Ti-Ni shape memory alloy[J]. Comp. Mater. Sci., 2016, 117: 22
[17] Burlayenko V N, Altenbach H, Sadowski T, et al.Computational simulations of thermal shock cracking by the virtual crack closure technique in a functionally graded plate[J]. Comp. Mater. Sci., 2016, 116: 11
[18] Qi F G, Ding H M, Wang X L, et al.The stress and strain field distribution around the reinforced particles in Al/TiC composites: A finite element modeling study[J]. Comput. Mater. Sci., 2017, 137: 297
[19] Park H K, Jung J, Kim H S.Three-dimensional microstructure modeling of particulate composites using statistical synthetic structure and its thermo-mechanical finite element analysis[J]. Comput. Mater. Sci., 2017, 126: 265
[20] Yin T T, Wang Y, He L H, et al.Stress and damage development in the carbonization process of manufacturing carbon/carbon composites[J]. Comput. Mater. Sci., 2017, 138: 27
[21] Du J, Chong X Y, Jiang Y H, et al.Numerical simulation of mold filling process for high chromium cast iron matrix composite reinforced by ZTA ceramic particles[J]. Int. J. Heat Mass Transfer, 2015, 89: 872
[22] Zhang H S, Hu R X, Kang S T.Finite Element Analysis for ANSYS12.0 from Entry to Proficient [M]. Beijing: Mechanical Industry Press, 2010: 10(张红松, 胡仁喜, 康士廷. ANSYS 12.0有限元分析从入门到精通 [M]. 北京: 机械工业出版社, 2010: 10)
[23] Nan J P.Numerical simulation of sodium silicate sand casting process for turbine blade [D]. Changsha: Central South University, 2011(南江鹏. 水轮机叶片的水玻璃砂型铸造过程数值模拟研究 [D]. 长沙: 中南大学, 2011)
[24] Zhao H D, Liu B C.Modeling of stable and meta-stable eutectic transformation of spheroidal graphite iron casting[J]. ISIJ Int., 2001, 41: 986
[25] Ren F H, Dang J Z, Mao H K.ANSYS simulation of stress field during quenching process for circular shear blade of CrMn steel[J]. Hot Work Technol., 2007, 36: 88(任凤华, 党惊知, 毛红奎. CrMn钢圆刀片淬火应力场ANSYS模拟[J]. 热加工工艺, 2007, 36: 88)
[26] Owusu Y A.Physical-chemistry study of sodium silicate as a foundry sand binder[J]. Adv. Colloid Interface Sci., 1982, 18: 57
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[3] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[6] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[7] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[8] TANG Haiyan, LIU Jinwen, WANG Kaimin, XIAO Hong, LI Aiwu, ZHANG Jiaquan. Progress and Perspective of Functioned Continuous Casting Tundish Through Heating and Temperature Control[J]. 金属学报, 2021, 57(10): 1229-1245.
[9] WANG Fuqiang, LIU Wei, WANG Zhaowen. Effect of Local Cathode Current Increasing on Bath-Metal Two-Phase Flow Field in Aluminum Reduction Cells[J]. 金属学报, 2020, 56(7): 1047-1056.
[10] LIU Jizhao, HUANG Hefei, ZHU Zhenbo, LIU Awen, LI Yan. Numerical Simulation of Nanohardness in Hastelloy N Alloy After Xenon Ion Irradiation[J]. 金属学报, 2020, 56(5): 753-759.
[11] WANG Bo,SHEN Shiyi,RUAN Yanwei,CHENG Shuyong,PENG Wangjun,ZHANG Jieyu. Simulation of Gas-Liquid Two-Phase Flow in Metallurgical Process[J]. 金属学报, 2020, 56(4): 619-632.
[12] TANG Haiyan, LI Xiaosong, ZHANG Shuo, ZHANG Jiaquan. Fluid Flow and Heat Transfer in a Tundish with Channel Induction Heating for Sequence Casting with a Constant Superheat Control[J]. 金属学报, 2020, 56(12): 1629-1642.
[13] XU Qingyan,YANG Cong,YAN Xuewei,LIU Baicheng. Development of Numerical Simulation in Nickel-Based Superalloy Turbine Blade Directional Solidification[J]. 金属学报, 2019, 55(9): 1175-1184.
[14] Peiyuan DAI,Xing HU,Shijie LU,Yifeng WANG,Dean DENG. Influence of Size Factor on Calculation Accuracy of Welding Residual Stress of Stainless Steel Pipe by 2D Axisymmetric Model[J]. 金属学报, 2019, 55(8): 1058-1066.
[15] ZHANG Qingdong, LIN Xiao, LIU Jiyang, HU Shushan. Modelling of Q&P Steel Heat Treatment Process Based on Finite Element Method[J]. 金属学报, 2019, 55(12): 1569-1580.
No Suggested Reading articles found!