Please wait a minute...
Acta Metall Sin  2018, Vol. 54 Issue (2): 161-173    DOI: 10.11900/0412.1961.2017.00317
Orginal Article Current Issue | Archive | Adv Search |
Research Status and Prospect on Numerical Simulation Technology of Casting Macroscopic Process
Dunming LIAO(), Liu CAO, Fei SUN, Tao CHEN
State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Cite this article: 

Dunming LIAO, Liu CAO, Fei SUN, Tao CHEN. Research Status and Prospect on Numerical Simulation Technology of Casting Macroscopic Process. Acta Metall Sin, 2018, 54(2): 161-173.

Download:  HTML  PDF(4773KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In recent years, with increasingly maturing of computer simulation technology, numerical simulation methods are playing an increasing significant role in casting macroscopic process, and the research status on numerical simulation technologies in casting macroscopic processes is summarized in this paper. The differences in casting filling process discribed using different flow models are compared, and it is found that the two-phase flow model can be used to accurately handle the effect of gas phase on filling process. The applicabilities of different stress models to the evolution process of casting stress are also analyzed. The accessing and correcting method of physical property parameters, which is fit for simulation of casting macroscopic process, is explained. And the method is that the alloy composition and solidus/liquidus temperature are measured by experimental means, then physical property parameters are calculated by relevant softwares and adjusted accordingly, at last, the parameters are corrected according to temperature experiment. The boundary conditions of different casting techniques are listed, and, in addition, the boundary conditions of high pressure die casting (velocity inlet) and directional solidi fication (radiation heat transfer boundary) are explained specially. The differences of different mesh types are compared, in combination with which the differences of different numerical solution methods are analyzed. The suitable meshes would be adaptive hexahedral mesh and hybrid mesh, because they fit more for finite volume method (calculation for filling process) and finite element method (calculation for solidification and stress evolution processes). Prediction models and analysis methods of different casting defects are illustrated. In this paper, various methods used in simulation of casting process are introduced, and their application development trends are also predicted. We hope to offer a reliable reference for numerical simulation methods of casting macroscopic process.

Key words:  casting      macroscopic process      numerical simulation      mathematical model      boundary condition      defect prediction     
Received:  26 July 2017     
Fund: Supported by New Century Excellent Talents in University (No.NCET-13-0229) and National Science & Technology Key Projects of Numerical Control (No.2012ZX04010-031)

URL: 

https://www.ams.org.cn/EN/10.11900/0412.1961.2017.00317     OR     https://www.ams.org.cn/EN/Y2018/V54/I2/161

Fig.1  Comparisons between simulated filling results with single-phase flow model (a, b), two-phase flow model (c, d) and lost foam model (e, f) (The entrapped air which existed in the bottom of casting (Fig.1a) is “vanished” at the next moment (Fig.1b); the entrapped air which existed in the bottom of casting (Fig.1c) is uplifted at the next moment (Fig.1d); the liquid front during the lost foam casting process (Fig.1e) is overall moved forward at the next moment (Fig.1f))
Fig.2  Calculated interfacial heat-transfer coefficient between copper alloy and metal mould in inverse heat conduction method
(a) experimental design (unit: mm)
(b) curves of calculated interfacial heat-transfer coefficient vs time
Fig.3  Simulated results of different casting techniques
(a) gravity casting (b) high pressure die casting (c) tilting casting (d) centrifugal casting (e) low pressure die casting (f) directional solidification
Casting technique Boundary condition
Gravity casting Velocity inlet; temperature inlet; air cooling boundary
Investment casting Velocity inlet; temperature inlet; air cooling boundary
High pressure die casting Velocity inlet; temperature inlet; air cooling boundary
Low pressure die casting Pressure inlet; temperature inlet; air cooling boundary
Centrifugal casting Velocity inlet; temperature inlet; air cooling boundary; setting of rotation axis
Tilting casting Velocity inlet; temperature inlet; air cooling boundary; setting of tilting
Directional solidification Velocity inlet; temperature inlet; setting of drawing; radiation heat transfer boundary
Table 1  Boundary conditions of different casting techniques
Fig.4  Different mesh types
(a) finite difference mesh (b) multi-grid (c) adaptive hexahedral mesh (d) tetrahedral mesh (e) hybrid mesh (f) mesh-less method
Fig.5  Simulated results of different defects
(a) misrun (b) cold shut (c) air entrapment (d) oxide inclusion (e) core gas (f) shrinkage porosity (g) deformation (h) residual stress (i) mould erosion
[1] Fursund V K.Das eindringen von stahl in forsand einflub der obserflachen reaktionen und der temperatur[J]. Giesserei Tech. Wiss. Beih., 1962, 14: 51
[2] Liu D R, Yang Z P, Wang L P, et al.Development of simulation of mould filling during casting: A review[J]. J. Harbin Univ. Sci. Technol., 2016, 21(3): 96(刘东戎, 杨智鹏, 王丽萍等. 铸造充型过程数值模拟技术的发展及现状评述[J]. 哈尔滨理工大学学报, 2016, 21(3): 96)
[3] Ravi B, Joshi D.Feedability analysis and optimisation driven by casting simulation[J]. Indian Foundry J., 2007, 53: 71
[4] Temam R.Navier-Stokes Equations[M]. 3rd Ed., Amsterdam: North-Holland, 1984: 30
[5] Taitel Y.On the parabolic, hyperbolic and discrete formulation of the heat conduction equation[J]. Int. J. Heat Mass Transfer, 1972, 15: 369
[6] Chen T.Numerical simulation of casting thermal stress based on finite element method and intelligent techniques [D]. Wuhan: Huazhong University of Science and Technology, 2013(陈涛. 基于有限元法的铸造热应力数值模拟及其智能化技术的研究 [D]. 武汉: 华中科技大学, 2013)
[7] Mirbagheri S M H, Varahram N, Davami P. 3D computer simulation of melt flow and heat transfer in the lost foam casting process[J]. Int. J. Numer. Methods Eng., 2003, 58: 723
[8] Zhu W, Han Z Q, Jia Z Z, et al.An elastic-viscoplastic constitutive model for squeeze casting aluminum alloy[J]. Acta Metall. Sin., 2008, 44: 440(朱维, 韩志强, 贾湛湛等. 挤压铸造铝合金弹黏塑性本构模型[J]. 金属学报, 2008, 44: 440)
[9] Wang Y C, Li D Y, Peng Y H, et al.Numerical simulation of low pressure die casting of magnesium wheel[J]. Int. J. Adv. Manuf. Technol., 2007, 32: 257
[10] Keerthiprasad K S, Murali M S, Mukunda P G, et al.Numerical simulation and cold modeling experiments on centrifugal casting[J]. Metall. Mater. Trans., 2011, 42B: 144
[11] Liao D M, Cao L, Chen T, et al.Radiation heat transfer model for complex superalloy turbine blade in directional solidification process based on finite element method[J]. China Foundry, 2016, 13: 123
[12] Dabade U A, Bhedasgaonkar R C.Casting defect analysis using design of experiments (DoE) and computer aided casting simulation technique[J]. Procedia CIRP, 2013, 7: 616
[13] Cao L, Liao D M, Zhou C, et al.Self-development casting temprature-field simulation software for multiply materials based on finite element method[J]. Spec. Cast. Nonferr. Alloy., 2015, 35: 1163(曹流, 廖敦明, 周聪等. 基于有限元法的多材质铸造温度场模拟软件开发[J]. 特种铸造及有色合金, 2015, 35: 1163)
[14] Liu L J, Nakano S, Kakimoto K.Dynamic simulation of temperature and iron distributions in a casting process for crystalline silicon solar cells with a global model[J]. J. Cryst. Growth, 2006, 292: 515
[15] Sang W M, Li F W.An unstructured/structured multi-layer hybrid grid method and its application[J]. Int. J. Numer. Meth. Fluids, 2007, 53: 1107
[16] Mitchell A R, Griffiths D F.The Finite Difference Method in Partial Differential Equations[M]. Chichester: John Wiley and Sons, 1980: 30
[17] Cao L, Liao D M, Cao L M, et al.Temperature-field simulation software self-development of investment casting based on finite element method[J]. Foundry, 2014, 63: 1235(曹流, 廖敦明, 曹腊梅等. 基于有限元法的熔模铸造过程温度场模拟软件自主开发[J]. 铸造, 2014, 63: 1235)
[18] Kim J, Kim D, Choi H.An immersed-boundary finite-volume method for simulations of flow in complex geometries[J]. J. Comput. Phys., 2001, 171: 132
[19] Liu G R, Liu M B.Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M]. Singapore: World Scientific, 2003: 30
[20] Cao W J, Zhou Z Y, Jiang F M.Smoothed particle hydrodynamics modeling and simulation of foundry filling process[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2321
[21] Carman P C.Fluid flow through granular beds[J]. Trans. Instn. Chem. Eng., 1937, 15: 150
[22] Homayonifar P, Babaei R, Attar E, et al.Numerical modeling of splashing and air entrapment in high-pressure die casting[J]. Int. J. Adv. Manuf. Technol., 2008, 39: 219
[23] Gunasegaram D R, Farnsworth D J, Nguyen T T.Identification of critical factors affecting shrinkage porosity in permanent mold casting using numerical simulations based on design of experiments[J]. J. Mater. Process. Technol., 2009, 209: 1209
[24] Liao D M, Liu R X, Chen L L, et al.Study on numerical simulation of thermal stresses during casting's solidification process based on FDM[J]. Foundry, 2003, 52: 420(廖敦明, 刘瑞祥, 陈立亮等. 基于有限差分法的铸件凝固过程热应力场数值模拟的研究[J]. 铸造, 2003, 52: 420)
[25] Gu J P, Beckermann C.Simulation of convection and macrosegregation in a large steel ingot[J]. Metall. Mater. Trans., 1999, 30A: 1357
[26] Qin Y J, Sun G X, Yu W P, et al.Criterion for predicting cold shut mark[J]. Shanghai Met., 1997, 19(5): 23(秦永健, 孙国雄, 虞维平等. 冷隔缺陷预测判据[J]. 上海金属, 1997, 19(5): 23)
[27] Lai N W, Griffiths W D, Campbell J.Modelling of the potential for oxide film entrainment in light metal alloy castings [A]. Proceedings of the 10th International Conference on Modeling of Casting, Welding and Advanced Solidification Processes[C]. Destin, FL: Sandestin Resort & Conference Center, 2003: 415
[28] Maeda Y, Nomura H, Otsuka Y, et al.Numerical simulation of gas flow through sand core[J]. Int. J. Cast Met. Res., 2002, 15: 441
[29] Wang H L, Zheng X S, Yao S, et al.Equivalent strain criterion for hot cracking prediction[J]. J. Dalian Univ. Technol., 1998, 38(2): 194(王恒林, 郑贤淑, 姚山等. 热裂预测的等效应变判据[J]. 大连理工大学学报, 1998, 38(2): 194)
[30] Jiao Y B, Wei Y H.Erosion process analysis of die-casting die for magnesium alloy componen[J]. Mech. Eng. Autom., 2008, (5): 97(焦亚波, 卫英慧. 镁合金压铸模表面冲蚀过程分析[J]. 机械工程与自动化, 2008, (5): 97)
[31] Launder B E, Spalding D B.The numerical computation of turbulent flows[J]. Comput. Meth. Appl. Mech. Eng., 1974, 3: 269
[32] Hirt C W, Nichols B D.Volume of fluid (VOF) method for the dynamics of free boundaries[J]. J. Comput. Phys., 1981, 39: 201
[33] Sussman M.A level set approach for computing solutions to incompressible two-phase flow [D]. Los Angeles: University of California, 1994
[34] Pedlosky J.Geophysical Fluid Dynamics[M]. 2nd Ed., Berlin: Springer-Verlag, 1987: 30
[35] Elliott A J, Pollock T M.Thermal analysis of the Bridgman and liquid-metal-cooled directional solidification investment casting processes[J]. Metall. Mater. Trans., 2007, 38A: 871
[36] Brackbill J U, Kothe D B, Zemach C.A continuum method for modeling surface tension[J]. J. Comput. Phys., 1992, 100: 335
[37] Chen Y J.Research on numerical simulation of mould filling process of lost foam casting [D]. Wuhan: Huazhong University of Science and Technology, 2005(陈亚娟. 消失模铸造充型过程数值模拟研究 [D]. 武汉: 华中科技大学, 2005)
[38] Liu X J, Bhavnani S H, Overfelt R A.Simulation of EPS foam decomposition in the lost foam casting process[J]. J. Mater. Process. Technol., 2007, 182: 333
[39] Zhang Q.Numerical simulation of gray iron of lost foam casting process [D]. Shenyang: Shenyang Ligong University, 2012(张倩. 灰铸铁件消失模铸造过程模拟研究 [D]. 沈阳: 沈阳理工大学, 2012)
[40] Wei Z J, Li T X, An G Y, et al.Numerical calculation of gas pressure and gap width in lost foam process[J]. J. Harbin Inst. Technol., 1995, 27(4): 126(魏尊杰, 李天晓, 安阁英等. 消失模铸造气隙尺寸及压力数值计算[J]. 哈尔滨工业大学学报, 1995, 27(4): 126)
[41] Roos H G, Stynes M, Tobiska L.Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion And Flow Problems[M]. Berlin: Springer-Verlag, 1996: 30
[42] Bai Y F, Xu D M, Guo J J, et al.Numerical calculation for latent heat releases in alloy castings of any solidification range using an extended temperature-compensation method[J]. Acta Metall. Sin., 2003, 39: 623(白云峰, 徐达鸣, 郭景杰等. 采用温度回升法对任意结晶区间的铸件凝固结晶潜热的数值计算[J]. 金属学报, 2003, 39: 623)
[43] Zhou Y T, Guan Z Q, Gu Y X.Equivalent heat capacity method for solution of heat transfer with phase change[J]. J. Chem. Ind. Eng., 2004, 55: 1428(周业涛, 关振群, 顾元宪. 求解相变传热问题的等效热容法[J]. 化工学报, 2004, 55: 1428)
[44] Swaminathan C R, Voller V R.A general enthalpy method for modeling solidification processes[J]. Metall. Trans., 1992, 23B: 651
[45] Thomas B G.Issues in thermal-mechanical modeling of casting processes[J]. ISIJ Int., 1995, 35: 737
[46] Hattel J, Hansen P, Hansen L F.Analysis of thermally induced stresses in die casting using a novel control volume technique [A]. Modelling of Casting, Welding and Advanced Solidification Processes[C]. USA: Minerals, Metals & Materials Society, TMS, 1993: 585
[47] Celentano D, Oller S, O?ate E.A coupled thermomechanical model for the solidification of cast metals[J]. Int. J. Solids Struct., 1996, 33: 647
[48] Richmond O, Tien R H.Theory of thermal stresses and air-gap formation during the early stages of solidification in a rectangular mold[J]. J. Mech. Phys. Solids, 1971, 19: 273
[49] Wiese J W, Dantzig J A.Modeling stress development during the solidification of gray iron castings[J]. Metall. Trans., 1990, 21A: 489
[50] Kang J W, Xiong S M, Liu B C, et al.3D numerical simulation of thermal stresses of a cast steel specimen by rheological model and analysis of the mechanism of hot tearing[J]. China Mech. Eng., 1999, 10: 1302(康进武, 熊守美, 柳百成等. 基于流变学模型的铸钢试件三维热应力数值模拟及热裂机理研究[J]. 中国机械工程, 1999, 10: 1302)
[51] Jia B Q, Liu B C, Liu W Y.Rheological discussion on formation of hot cracking during solidification[J]. Foundry Technol., 1997, (6): 36(贾宝仟, 柳百成, 刘蔚羽. 砂型条件下铸件凝固过程热裂形成的流变学探讨[J]. 铸造技术, 1997, (6): 36)
[52] Han Z Q, Zhu W, Liu B C.Thermomechanical modeling of solidification process of squeeze casting I. Mathematic model and solution methodology[J]. Acta Metall. Sin., 2009, 45: 356(韩志强, 朱维, 柳百成. 挤压铸造凝固过程热-力耦合模拟I.数学模型及求解方法[J]. 金属学报, 2009, 45: 356)
[53] Zhu W, Han Z Q, Liu B C.Thermomechanical modeling of solidification process of squeeze casting II. Numerical simulation and experimental validation[J]. Acta Metall. Sin., 2009, 45: 363(朱维, 韩志强, 柳百成. 挤压铸造凝固过程热-力耦合模拟II.模拟计算及实验验证[J]. 金属学报, 2009, 45: 363)
[54] Shao H, Li Y, Nan H, et al.Research on the interfacial heat transfer coeffecient between casting and ceramic shell in investment casting process of Ti6Al4V alloy[J]. Acta Metall. Sin., 2015, 51: 976(邵珩, 李岩, 南海等. 熔模铸造条件下Ti6Al4V合金铸件与陶瓷型壳间界面换热系数研究[J]. 金属学报, 2015, 51: 976)
[55] Cao Y Y, Xiong S M, Guo Z P.Development of an inverse heat transfer model between melt and shot sleeve and its application in high pressure die casting process[J]. Acta Metall. Sin., 2015, 51: 745(曹永友, 熊守美, 郭志鹏. 压铸压室内部界面传热反算模型的建立和应用[J]. 金属学报, 2015, 51: 745)
[56] Wang X, Zhao Y T, Su D W, et al.Simulation of mold filling and temperature field of mold in metal mold gravity casting by ProCAST[J]. Foundry, 2008, 57: 1263(汪煦, 赵玉涛, 苏大为等. ProCAST在金属型重力铸造充型和模具温度场中的应用[J]. 铸造, 2008, 57: 1263)
[57] Zhao H D, Ohnaka I, Zhu J D.Modeling of mold filling of Al gravity casting and validation with X-ray in-situ observation[J]. Appl. Math. Modell., 2008, 32: 185
[58] Jin C K, Kang C G.Fabrication process analysis and experimental verification for aluminum bipolar plates in fuel cells by vacuum die-casting[J]. J. Power Sources, 2011, 196: 8241
[59] D?rum C, Laukli H I, Hopperstad O S.Through-process numerical simulations of the structural behaviour of Al-Si die-castings[J]. Comput. Mater. Sci., 2009, 46: 100
[60] Wang H, Djambazov G, Pericleous K A, et al.Modelling the dynamics of the tilt-casting process and the effect of the mould design on the casting quality[J]. Comput. Fluids, 2011, 42: 92
[61] Wang H, Djambazov G, Pericleous K, et al.Numerical modelling of tilt casting process for γ-TiAl alloys[J]. Int. J. Cast Met. Res., 2012, 25: 65
[62] Lu S L, Xiao F R, Zhang S J, et al.Simulation study on the centrifugal casting wet-type cylinder liner based on ProCAST[J]. Appl. Therm. Eng., 2014, 73: 512
[63] Huang L, Du X C, Luo C B, et al.Low pressure casting ZL114A oil circuit shell casting[J]. Spec. Cast. Nonferrous Alloy, 2016, 36: 826(黄粒, 杜旭初, 罗传彪等. ZL114A铝合金油路壳体低压铸造工艺研究[J]. 特种铸造及有色合金, 2016, 36: 826)
[64] Tang N, Wang Y L, Xu Q Y, et al.Numerical simulation of directional solidified microstructure of wide-chord aero blade by Bridgeman process[J]. Acta Metall. Sin., 2015, 51: 499(唐宁, 王艳丽, 许庆彦等. 宽弦航空叶片Bridgeman定向凝固组织数值模拟[J]. 金属学报, 2015, 51: 499)
[65] Yan X W, Tang N, Liu X F, et al.Modeling and simulation of directional solidification by LMC process for nickel base superalloy casting[J]. Acta Metall. Sin., 2015, 51: 1288(闫学伟, 唐宁, 刘孝福等. 镍基高温合金铸件液态金属冷却定向凝固建模仿真及工艺规律研究[J]. 金属学报, 2015, 51: 1288)
[66] Cao L, Liao D M, Lu Y Z, et al.Heat transfer model of directional solidification by LMC process for superalloy casting based on finite element method[J]. Metall. Mater. Trans., 2016, 47A: 4640
[67] Luo H, Spiegel S, L?hner R.Hybrid grid generation method for complex geometries[J]. AIAA J., 2010, 48: 2639
[68] Grozdani? V.Finite-difference methods for simulating the solidification of castings[J]. Mater. Technol., 2009, 43: 233
[69] Chen T, Liao D M, Zhou J X.Numerical simulation of casting thermal stress and deformation based on finite difference method[J]. Mater. Sci. Forum, 2013, 762: 224
[70] Li C S, Thomas B G.Thermomechanical finite-element model of shell behavior in continuous casting of steel[J]. Metall. Mater. Trans., 2004, 35B: 1151
[71] Versteeg H K, Malalasekera W.An Introduction to Computational Fluid Dynamics: The Finite Volume Method[M]. New York: Pearson Education, 2007: 30
[72] Liu M B, Liu G R.Smoothed particle hydrodynamics (SPH): An overview and recent developments[J]. Arch. Comput. Meth. Eng., 2010, 17: 25
[73] Arnberg L, B?ckerud L, Chai G.Solidification Characteristics of Aluminum Alloys: Dendrite Coherency[M]. Schaumburg: American Foundrymen's Society, 1996: 30
[74] Vazquez V, Juarez-Hernandez A, Mascarenas A, et al.Cold shut formation analysis on a free lead yellow brass tap[J]. Eng. Fail. Anal., 2010, 17: 1285
[75] Pang S Y, Chen L L, Zhang M Y, et al.Numerical simulation two phase flows of casting filling process using SOLA particle level set method[J]. Appl. Math. Model., 2010, 34: 4106
[76] Backer G, Kim C W, Siersma K, et al.Computational analysis of oxide Inclusions in aluminum castings[J]. Simulat. Aluminum Shape Cast. Process., 2006: 165
[77] Campbell J.The modeling of entrainment defects during casting [A]. TMS Annual Meeting, Simulation of Aluminum Shape Casting Processing: From Alloy Design to Mechanical Properties[C]. San Antonio, TX, United States: Minerals, Metals and Materials Society, 2006: 123
[78] Dai X, Yang X, Campbell J, et al.Influence of oxide film defects generated in filling on mechanical strength of aluminium alloy castings[J]. Mater. Sci. Technol., 2004, 20: 505
[79] Starobin A, Hirt C W, Goettsch D.A model for binder gas generation and transport in sand cores and molds [A]. Modeling of Casting, Welding, and Solidification Processes XII[C]. Warrendale, PA: TMS, The Minerals, Metals & Minerals Society, 2009: 30
[80] Nastac L, Jia S A, Nastac M N, et al.Numerical modeling of the gas evolution in furan binder-silica sand mold castings[J]. Int. J. Cast Met. Res., 2016, 29: 194
[81] Pan L W, Zhen L J, Zhang H, et al.Applicability of shrinkage porosity prediction for casting with Niyama criterion[J]. J. Beijing Univ. Aeronaut. Astronaut., 2011, 37: 1534(潘利文, 郑立静, 张虎等. Niyama判据对铸件缩孔缩松预测的适用性[J]. 北京航空航天大学学报, 2011, 37: 1534)
[82] Zhang B.Casting thermal stress simulation in quasi-solid state during solidification based on ABAQUS [D]. Wuhan: Huazhong University of Science and Technology, 2011(张彬. 基于ABAQUS的铸件准固态区热应力场数值模拟技术 [D]. 武汉: 华中科技大学, 2011)
[83] Rappaz M, Drezet J M, Gremaud M.A new hot-tearing criterion[J]. Metall. Mater. Trans., 1999, 30A: 449
[84] Beckermann C.Modelling of macrosegregation: Applications and future needs[J]. Int. Mater. Rev., 2002, 47: 243
[85] Wu F.Numerical simulation of the aluminum irregular castings in HPDC [D]. Guangzhou: South China University of Technology, 2010(吴菲. 铝合金异形件压铸成形工艺的数值模拟分析 [D]. 广州: 华南理工大学, 2010)
[86] Goettsch D D, Dantzig J A.Modeling microstructure development in gray cast irons[J]. Metall. Mater. Trans., 1994, 25A: 1063
[87] Xiao Q Z, Karihaloo B L.Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery[J]. Int. J. Numer. Methods Eng., 2006, 66: 1378
[88] Wang D X, Liu L Y, Wang Z B, et al.Optimization of injection mold process parameters based on artificial neural network technology[J]. Die Mould Technol., 2001, (6): 1(王德翔, 刘来英, 王振宝等. 基于人工神经网络技术的注塑成型工艺参数优化[J]. 模具技术, 2001, (6): 1)
[89] Panchal J H, Kalidindi S R, McDowell D L. Key computational modeling issues in integrated computational materials engineering[J]. Comput. Aided Des., 2013, 45: 4
[1] BI Zhongnan, QIN Hailong, LIU Pei, SHI Songyi, XIE Jinli, ZHANG Ji. Research Progress Regarding Quantitative Characterization and Control Technology of Residual Stress in Superalloy Forgings[J]. 金属学报, 2023, 59(9): 1144-1158.
[2] WANG Chongyang, HAN Shiwei, XIE Feng, HU Long, DENG Dean. Influence of Solid-State Phase Transformation and Softening Effect on Welding Residual Stress of Ultra-High Strength Steel[J]. 金属学报, 2023, 59(12): 1613-1623.
[3] ZHANG Kaiyuan, DONG Wenchao, ZHAO Dong, LI Shijian, LU Shanping. Effect of Solid-State Phase Transformation on Stress and Distortion for Fe-Co-Ni Ultra-High Strength Steel Components During Welding and Vacuum Gas Quenching Processes[J]. 金属学报, 2023, 59(12): 1633-1643.
[4] PENG Zhiqiang, LIU Qian, GUO Dongwei, ZENG Zihang, CAO Jianghai, HOU Zibing. Independent Change Law of Mold Heat Transfer in Continuous Casting Based on Big Data Mining[J]. 金属学报, 2023, 59(10): 1389-1400.
[5] SHEN Yingying, ZHANG Guoxing, JIA Qing, WANG Yumin, CUI Yuyou, YANG Rui. Interfacial Reaction and Thermal Stability of the SiCf/TiAl Composites[J]. 金属学报, 2022, 58(9): 1150-1158.
[6] XIA Dahai, DENG Chengman, CHEN Ziguang, LI Tianshu, HU Wenbin. Modeling Localized Corrosion Propagation of Metallic Materials by Peridynamics: Progresses and Challenges[J]. 金属学报, 2022, 58(9): 1093-1107.
[7] WANG Chunhui, YANG Guangyu, ALIMASI Aredake, LI Xiaogang, JIE Wanqi. Effect of Printing Parameters of 3DP Sand Mold on the Casting Performance of ZL205A Alloy[J]. 金属学报, 2022, 58(7): 921-931.
[8] GUO Dongwei, GUO Kunhui, ZHANG Fuli, ZHANG Fei, CAO Jianghai, HOU Zibing. A New Method for CET Position Determination of Continuous Casting Billet Based on the Variation Characteristics of Secondary Dendrite Arm Spacing[J]. 金属学报, 2022, 58(6): 827-836.
[9] LI Min, LI Haoze, WANG Jijie, MA Yingche, LIU Kui. Effect of Ce on the Microstructure, High-Temperature Tensile Properties, and Fracture Mode of Strip Casting Non-Oriented 6.5%Si Electrical Steel[J]. 金属学报, 2022, 58(5): 637-648.
[10] SUN Baode, WANG Jun, KANG Maodong, WANG Donghong, DONG Anping, WANG Fei, GAO Haiyan, WANG Guoxiang, DU Dafan. Investment Casting Technology and Development Trend of Superalloy Ultra Limit Components[J]. 金属学报, 2022, 58(4): 412-427.
[11] LIU Zhongqiu, LI Baokuan, XIAO Lijun, GAN Yong. Modeling Progress of High-Temperature Melt Multiphase Flow in Continuous Casting Mold[J]. 金属学报, 2022, 58(10): 1236-1252.
[12] WANG Donghong, SUN Feng, SHU Da, CHEN Jingyang, XIAO Chengbo, SUN Baode. Data-Driven Design of Cast Nickel-Based Superalloy and Precision Forming of Complex Castings[J]. 金属学报, 2022, 58(1): 89-102.
[13] HU Long, WANG Yifeng, LI Suo, ZHANG Chaohua, DENG Dean. Study on Computational Prediction About Microstructure and Hardness of Q345 Steel Welded Joint Based on SH-CCT Diagram[J]. 金属学报, 2021, 57(8): 1073-1086.
[14] LI Zihan, XIN Jianwen, XIAO Xiao, WANG Huan, HUA Xueming, WU Dongsheng. The Arc Physical Characteristics and Molten Pool Dynamic Behaviors in Conduction Plasma Arc Welding[J]. 金属学报, 2021, 57(5): 693-702.
[15] LIU Riping, MA Mingzhen, ZHANG Xinyu. New Development of Research on Casting of Bulk Amorphous Alloys[J]. 金属学报, 2021, 57(4): 515-528.
No Suggested Reading articles found!